Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Introduction: Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. Methods: 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or stainless steel (n=20). RSA was used to measure dynamically inducible micromotion (DIMM: difference in stem position in going from double-leg stance (DLS) to single leg stance (SLS)), prosthesis bending (difference in the head-tip distance when going from DLS to SLS), and mean migration of the head, tip and the cement restrictor. DIMM and bending were measured at 3 months, migration at 6, 12 and 24 months. All analyses were carried out using SPSS for windows (v.15.0.0, Chicago. IL, USA). Results were reported as mean ± 95% confidence interval (CI) and regarded as significant when p < 0.05. Results: Preliminary analysis showed that DIMM of head was significantly (p = 0.02) greater for CoCr (0.97mm ± 0.6mm) than stainless steel (0.27mm ± 0.6mm). The mean stem bending for CoCr was 0.08mm (± 0.06mm) and for stainless steel 0.15mm (± 0.06mm) (p =0.77). Both implants heads migrated posteriorly, medially and distally. The mean subsidence for the cobalt-chromium and stainless steel stems was 1.02mm (±0.19mm) (p < 0.001) and 1.12mm (± 0.34mm) (p=0.001) (p= 0.07) at 24 months. Conclusion: Dynamically induced micromotion was greater for the stiffer stem, however there were no differences in terms of over all migration, indicating that survival (in terms of loosening) should be the similar for both stainless steel and CoCr versions of this implant.


Conference paper

Publication Date