Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Today's sutures are the result of a 4000-year innovation process with regard to their materials and manufacturing techniques, yet little has been done to enhance the therapeutic value of the suture itself. In this review, we explore the historical development, regulatory database and clinical literature of sutures to gain a fuller picture of suture advances to date. First, we examine historical shifts in suture manufacturing companies and review suture regulatory databases to understand the forces driving suture development. Second, we gather the existing clinical evidence of suture efficacy from reviewing the clinical literature and the Food and Drug Administration database in order to identify to what extent sutures have been clinically evaluated and the key clinical areas that would benefit from improved suture materials. Finally, we apply tissue engineering and regenerative medicine design hypotheses to suture materials to identify routes by which bioactive sutures can be designed and passed through regulatory hurdles, to improve surgical outcomes. Our review of the clinical literature revealed that many of the sutures currently in use have been available for decades, yet have never been clinically evaluated. Since suture design and development is industry driven, incremental modifications have allowed for a steady outflow of products while maintaining a safe regulatory position and limiting costs. Until recently, there has been little academic interest in suture development, however the rise of regenerative medicine strategies is shifting the suture paradigm from an inert material, which mechanically approximates tissue, to a bioactive material, which also actively promotes cell-directed repair and a positive healing response. These materials hold significant therapeutic potential, but could be associated with an increased regulatory burden, cost, and clinical evaluation compared with current devices.

Original publication

DOI

10.1177/0885328217720641

Type

Journal article

Journal

J Biomater Appl

Publication Date

09/2017

Volume

32

Pages

410 - 421

Keywords

Sutures, bioactive, clinical efficacy, regenerative materials, synthetic absorbable, Absorbable Implants, Animals, Biocompatible Materials, Device Approval, Humans, Infections, Inventions, Regenerative Medicine, Sutures