Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During antigen recognition by T cells different receptors and ligands form a pattern in the intercellular junction called the immunological synapse, which might be involved in T-cell activation. Recently, a synapse assembly model has been proposed, which enables the calculation of the propensity for synapse assembly driven by membrane-constrained protein binding interactions. We bring together model predictions of mature synapse assembly with data on the dependence of T-cell responses on T-cell receptor (TCR)-MHC-peptide (pMHC) binding kinetics. Predictions of mature synapse assembly, based on TCR-pMHC binding kinetics, correlate well with observed cytokine responses by T cells bearing the relevant TCR but not with cytotoxic T lymphocyte-mediated killing. We discuss the suggested different role for the synapse in pre- and post-nuclear activation events in T cells. The view of immunological synapse assembly given here emphasizes the importance of both the on and off rates for the TCR-pMHC interaction and in this context recent data on a positive role for analogs of self-peptides in synapse assembly is considered.

Original publication

DOI

10.1016/s1471-4906(02)02285-8

Type

Journal article

Journal

Trends Immunol

Publication Date

10/2002

Volume

23

Pages

492 - 499

Keywords

Animals, Cytokines, Cytotoxicity, Immunologic, Humans, Intercellular Junctions, Lymphocyte Activation, Models, Immunological, Receptors, Antigen, T-Cell, T-Lymphocytes