Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human leukocyte antigen HLA-B27 is strongly associated with development of a group of inflammatory arthritides collectively known as the spondyloarthritides. We have set out to define the natural immunological function of HLA-B27, and then to apply this knowledge to understand its pathogenic role. Human leukocyte antigen class 1 molecules bind antigenic peptides for cell surface presentation to cytotoxic T lymphocytes. HLA-B27 binds and presents peptides from influenza, HIV, Epstein-Barr virus, and other viruses. This leads to vigorous and specific cytotoxic T lymphocyte responses, which play an important role in the body's immune response to these viruses. HLA-B27 thus carries out its natural function highly effectively. Although many theories have been proposed to explain the role of HLA-B27 in the pathogenesis of spondyloarthropathy, we favour those postulating that the pathogenic role of HLA-B27 stems from its natural function. For example, the 'arthritogenic' peptide hypothesis suggests that disease results from the ability of HLA-B27 to bind a unique peptide or a set of antigenic peptides. Additionally, a number of lines of evidence from our laboratory and other laboratories have suggested that HLA-B27 has unusual cell biology. We have recently demonstrated that HLA-B27 is capable of forming disulfide-bonded homodimers. These homodimers are expressed on the cell surface and are ligands for a number of natural killer and related immunoreceptors, expressed on a variety of cell types including natural killer cells, T lymphocytes and B lymphocytes, and members of the monocyte/macrophage lineage. We are currently investigating the possibility that such interactions could be involved in disease pathogenesis.

Original publication

DOI

10.1186/ar571

Type

Journal article

Journal

Arthritis Res

Publication Date

2002

Volume

4 Suppl 3

Pages

S153 - S158

Keywords

Animals, HLA-B27 Antigen, Humans, Protein Structure, Tertiary, Spondylarthritis