Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Autophagy functions as a cell-autonomous effector mechanism of innate immunity by separating bacteria from cytosolic resources and delivering them for lysosomal destruction. How cytosolic bacteria are targeted for autophagy is incompletely understood. We recently discovered that Salmonella enterica serotype Typhimurium and Streptococcus pyogenes are detected by NDP52 (nuclear dot protein 52 kDa), after these bacteria enter the cytosol of human cells and become decorated with polyubiquitinated proteins. NDP52 binds the bacterial ubiquitin coat as well as ATG8/LC3 and delivers cytosolic bacteria into autophagosomes. In the absence of NDP52 ubiquitin-coated bacteria accumulate outside ATG8/LC3(+) autophagosomes. Cells lacking NDP52 fail to restrict bacterial proliferation, as do cells depleted of TBK1, an IKK family kinase colocalizing with NDP52 at the bacterial surface. Our findings demonstrate the existence of a receptor for the selective autophagy of cytosolic bacteria, suggesting that cells are able to differentiate between antibacterial and other forms of autophagy.

Original publication

DOI

10.4161/auto.6.2.11118

Type

Journal article

Journal

Autophagy

Publication Date

02/2010

Volume

6

Pages

288 - 289

Keywords

Autophagy, Cytosol, Humans, Nuclear Proteins, Protein-Serine-Threonine Kinases, Salmonella typhimurium, Streptococcus pyogenes, Ubiquitin