Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Synovial fibroblasts and osteoblasts generate active glucocorticoids by means of the 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) enzyme. This activity increases in response to proinflammatory cytokines or glucocorticoids. During inflammatory arthritis synovium and bone are exposed to both these factors. This study hypothesised that glucocorticoids magnify the effects of inflammatory cytokines on local glucocorticoid production in both synovium and bone. METHODS: The effects of inflammatory cytokines (IL-1beta/tumour necrosis factor alpha; TNFalpha) and glucocorticoids, alone or combined, were assessed on the expression and activity of 11beta-HSD1 in primary synovial fibroblasts, primary human osteoblasts and MG-63 osteosarcoma cells. A range of other target genes and cell types were used to examine the specificity of effects. Functional consequences were assessed using IL-6 ELISA. RESULTS: In synovial fibroblasts and osteoblasts, treatment with cytokines or glucocorticoids in isolation induced 11beta-HSD1 expression and activity. However, in combination, 11beta-HSD1 expression, activity and functional consequences were induced synergistically to a level not seen with isolated treatments. This effect was seen in normal skin fibroblasts but not foreskin fibroblasts or adipocytes and was only seen for the 11beta-HSD1 gene. Synergistic induction had functional consequences on IL-6 production. CONCLUSIONS: Combined treatment with inflammatory cytokines and glucocorticoids synergistically induces 11beta-HSD1 expression and activity in synovial fibroblasts and osteoblasts, providing a mechanism by which synovium and bone can interact to enhance anti-inflammatory responses by increasing localised glucocorticoid levels. However, the synergistic induction of 11beta-HSD1 might also cause detrimental glucocorticoid accumulation in bone or surrounding tissues.

Original publication

DOI

10.1136/ard.2009.107466

Type

Journal article

Journal

Ann Rheum Dis

Publication Date

06/2010

Volume

69

Pages

1185 - 1190

Keywords

11-beta-Hydroxysteroid Dehydrogenase Type 1, Cell Differentiation, Cells, Cultured, Cytokines, Dose-Response Relationship, Drug, Drug Synergism, Gene Expression Regulation, Enzymologic, Glucocorticoids, Humans, Inflammation Mediators, Osteoblasts, Osteosarcoma, Synovial Membrane, Tumor Cells, Cultured