Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Findings from the Maternal Vitamin D Osteoporosis Study (MAVIDOS) trial demonstrated a positive effect of gestational cholecalciferol supplementation on offspring bone mineral density (BMD) at age 4 y. Demonstrating the persistence of this effect is important to understanding whether maternal vitamin D supplementation could be a useful public health strategy to improving bone health. OBJECTIVES: We investigated whether gestational vitamin D supplementation increases offspring BMD at ages 6-7 y in an exploratory post-hoc analysis of an existing trial. METHODS: In the MAVIDOS randomized controlled trial, pregnant females <14 wk' gestation with a singleton pregnancy and serum 25-hydroxyvitamin D 25-100nmol/l at 3 United Kingdom hospitals (Southampton, Sheffield, and Oxford) were randomly assigned to either 1000 IU/d cholecalciferol or placebo from 14 to 17-wk gestation until delivery. Offspring born at term to participants recruited in Southampton were invited to the childhood follow-up at ages 4 and 6-7 y. The children had a dual-energy X-ray absorptiometry (DXA, Hologic discovery) scan of whole-body-less-head (WBLH) and lumbar spine, from which bone area, bone mineral content (BMC), BMD, and bone mineral apparent density (BMAD) were derived. Linear regression was used to compare the 2 groups adjusting for age, sex, height, weight, duration of consumption of human milk, and vitamin D use at 6-7 y. RESULTS: A total of 454 children were followed up at ages 6-7 y, of whom 447 had a usable DXA scan. Gestational cholecalciferol supplementation resulted in higher WBLH BMC [0.15 SD, 95% confidence interval (CI): 0.04, 0.26], BMD (0.18 SD, 95% CI: 0.06, 0.31), BMAD (0.18 SD, 95% CI: 0.04, 0.32), and lean mass (0.09 SD, 95% CI: 0.00, 0.17) compared with placebo. The effect of pregnancy cholecalciferol on bone outcomes was similar at ages 4 and 6-7 y. CONCLUSIONS: Supplementation with cholecalciferol 1000 IU/d during pregnancy resulted in greater offspring BMD and lean mass in mid-childhood compared with placebo in this exploratory post-hoc analysis. These findings suggest that pregnancy vitamin D supplementation may be an important population health strategy to improve bone health. TRIAL REGISTRATION NUMBER: This trial was registered at the ISRCTN (https://doi.org/10.1186/ISRCTN82927713) as 82927713 and EUDRACT (https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-001716-23/results) as 2007-001716-23.

Original publication

DOI

10.1016/j.ajcnut.2024.09.014

Type

Conference paper

Publication Date

11/2024

Volume

120

Pages

1134 - 1142

Keywords

bone mineral density, cholecalciferol, developmental programming, pregnancy, randomized controlled trial, vitamin D, Humans, Female, Bone Density, Pregnancy, Dietary Supplements, Child, Child, Preschool, Vitamin D, Cholecalciferol, Male, Follow-Up Studies, Adult, Absorptiometry, Photon, Maternal Nutritional Physiological Phenomena, United Kingdom