Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

All organisms are exposed constantly to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. While the innate immune system is the front line of response to each stimulant, it has been considered traditionally to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of 'innate immune memory' has been known for nearly a century, and is accepted among myeloid biologists. In recent years other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting that innate immune memory is a trait common to several cell types. During the last 30 years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if under-appreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory.

Original publication

DOI

10.1111/cei.13149

Type

Journal article

Journal

Clin Exp Immunol

Publication Date

07/2018

Volume

193

Pages

24 - 36

Keywords

endothelial cell, fibroblast, inflammation, innate immune memory, stromal memory