Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood-brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia.

Original publication




Journal article


Mol Neurobiol

Publication Date





563 - 573


Animals, Drug Delivery Systems, Enzyme Inhibitors, Humans, Matrix Metalloproteinase 9, Matrix Metalloproteinase Inhibitors, Neuroprotective Agents, Stroke, Tissue Plasminogen Activator