Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A number of pathogens, including several human-restricted organisms, persist and replicate within macrophages (Mφs) as a key step in pathogenesis. The mechanisms underpinning such host-restricted intracellular adaptations are poorly understood, in part, due to a lack of appropriate model systems. Here we explore the potential of human induced pluripotent stem cell derived macrophages (iPSDMs) to study such pathogen interactions. We show iPSDMs express a panel of established Mφ-specific markers, produce cytokines, and polarise into classical and alternative activation states in response to IFN-γ and IL-4 stimulation, respectively. iPSDMs also efficiently phagocytosed inactivated bacterial particles as well as live Salmonella Typhi and S. Typhimurium and were able to kill these pathogens. We conclude that iPSDMs can support productive Salmonella infection and propose this as a flexible system to study host/pathogen interactions. Furthermore, iPSDMs can provide a flexible and practical cellular platform for assessing host responses in multiple genetic backgrounds.

Original publication

DOI

10.1371/journal.pone.0124307

Type

Journal article

Journal

PLoS One

Publication Date

2015

Volume

10

Keywords

Animals, Cell Differentiation, Cell Line, Cytokines, Host Specificity, Humans, Induced Pluripotent Stem Cells, Macrophages, Mice, Phagocytosis, Salmonella typhimurium