Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper describes a novel 3-D segmentation technique posed within the Random Forests (RF) classification framework. Two improvements over the traditional RF framework are considered. Motivated by the high redundancy of feature selection in the traditional RF framework, the first contribution develops methods to improve voxel classification by selecting relatively "strong" features and neglecting "weak" ones. The second contribution involves weighting each tree in the forest during the testing stage, to provide an unbiased and more accurate decision than provided by the traditional RF. To demonstrate the improvement achieved by these enhancements, experimental validation is performed on adult brain MRI and 3-D fetal femoral ultrasound datasets. In a comparison of the new method with a traditional Random Forest, the new method showed a notable improvement in segmentation accuracy. We also compared the new method with other state-of-the-art techniques to place it in context of the current 3-D medical image segmentation literature.

Original publication

DOI

10.1109/TMI.2013.2284025

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

02/2014

Volume

33

Pages

258 - 271

Keywords

Adult, Algorithms, Brain, Decision Trees, Female, Femur, Humans, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Pregnancy, Ultrasonography, Prenatal