Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The development of an immune response to self antigens drives naive T cells to differentiate into subsets of CD8(+) and CD4(+) effector cells including T(H)1, T(H)2, cells and the more recently described T(H)17, and regulatory T cells (T(reg)). Rheumatoid arthritis is an autoimmune disease that engages an uncontrolled influx of inflammatory cells to the joints, eventually leading to joint damage. The role that effector T cells play in the local or systemic maintenance of, or protection against, inflammation and subsequent joint damage is now becoming better understoodthrough the use of animal models. In this review, we will explore the different animal models of RA, and their contribution to elucidating the role that effector T cells play in the regulation, induction, and maintenance of inflammatory joint disease. This understanding will aid in the design of more effective therapeutic strategies for rheumatoid arthritis and other autoimmune disorders.

Original publication

DOI

10.1016/j.febslet.2011.04.034

Type

Journal article

Journal

FEBS Lett

Publication Date

01/12/2011

Volume

585

Pages

3649 - 3659

Keywords

Animals, Arthritis, Rheumatoid, Cytokines, Disease Models, Animal, Humans, T-Lymphocytes