Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two groups of irreversible serine peptidase inhibitors, peptidyl chloromethyl ketones and peptidyl phosphonate diphenyl esters, were examined for antitrypanosomal activity against the bloodstream form of Trypanosoma brucei brucei. Both peptidyl chloromethyl ketones and peptidyl phosphonate diphenyl esters inhibited trypsin-like peptidases of the parasites and exhibited antitrypanosomal activity at micromolar concentrations. In live T. b. brucei, labelled analogues of both of these groups of inhibitors primarily targeted an 80-kDa peptidase, possibly a serine oligopeptidase known as oligopeptidase B. In an in vivo mouse model of infection, one of these inhibitors, carbobenzyloxyglycyl-4-amidinophenylglycine phosphonate diphenyl ester, was curative at 5 mg kg(-1) day(-1) but appeared toxic at higher doses. There was no significant correlation between the inhibitory potency (as evaluated against purified T. b. brucei oligopeptidase B) and the in vitro antitrypanosomal efficacy of either group of inhibitors, suggesting that these inhibitors were acting on multiple targets within the parasites, or had different cell permeability properties. These findings suggest that serine peptidases may represent novel chemotherapeutic targets in African trypanosomes.

Original publication




Journal article


Biochem Pharmacol

Publication Date





1497 - 1504


Alkanes, Animals, Binding Sites, Disease Models, Animal, Disease Progression, Esters, Kinetics, Mice, Mice, Inbred BALB C, Peptide Hydrolases, Protease Inhibitors, Trypanocidal Agents, Trypanosoma brucei brucei, Trypanosomiasis, African