Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The matrix metalloproteinase (MMP) family has been implicated in the process of a variety of diseases such as arthritis, atherosclerosis, and tumor cell metastasis. We have been designing single-stranded peptides (SSPs) and triple-helical peptides (THPs) as potential discriminatory MMP substrates. Edman degradation sequence and matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analyses of proteolytic activity have been utilized to aid in further substrate design. THP models of the alpha1(I)772-786 sequence from type I collagen were synthesized to examine the triple-helical substrate specificity of MMP family members. Sequence and MALDI-MS analyses were used in conjunction with a fluorometric assay to determine the exact point of cleavage by each MMP. MMP-1 (interstitial collagenase) cleaved the substrates at a single Gly-Ile bond, analogous to the cleavage site in type I collagen. MMP-2 (Mr 72 000 type IV collagenase; gelatinase A) was found to cleave the substrates at two sites, a Gly-Ile bond and a Gly-Gln bond. MMP-3 (stromelysin 1) was found to cleave only one of the substrates after reaction for 48 h. Ultimately, sequence and MALDI-MS analyses allowed us to detect an additional cleavage site for MMP-2 in comparison to MMP-1, while MMP-3 was found to cleave a substrate after an extended time period. The second cleavage site would cause the kinetic parameters for MMP-2 to be overestimated by the fluorometric assay. Further design variations for these substrates need to consider the presence of more stable triple-helical conformation (to eliminate MMP-3 binding) and the removal of Gly-Gln bonds that may be susceptible to MMP-2.

Original publication

DOI

10.1016/s0021-9673(00)00396-4

Type

Journal article

Journal

J Chromatogr A

Publication Date

18/08/2000

Volume

890

Pages

117 - 125

Keywords

Amino Acid Sequence, Circular Dichroism, Matrix Metalloproteinases, Molecular Sequence Data, Organophosphorus Compounds, Peptides, Protein Conformation, Sequence Analysis, Protein, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Substrate Specificity