Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.

Original publication




Journal article



Publication Date



biomarkers, collagen VI, endotrophin, fibrosis, neo-antigen