Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A hallmark of chronic infections is the presence of exhausted CD8 T cells, characterized by a distinct transcriptional program compared with functional effector or memory cells, co-expression of multiple inhibitory receptors, and impaired effector function, mainly driven by recurrent T cell receptor engagement. In the context of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, most studies focused on studying splenic virus-specific CD8 T cells. Here, we provide a detailed characterization of exhausted CD8 T cells isolated from six different tissues during established LCMV infection, using single-cell RNA sequencing. Our data reveal that exhausted cells are heterogeneous, adopt organ-specific transcriptomic profiles, and can be divided into five main functional subpopulations: advanced exhaustion, effector-like, intermediate, proliferating, or memory-like. Adoptive transfer experiments showed that these phenotypes are plastic, suggesting that the tissue microenvironment has a major impact in shaping the phenotype and function of virus-specific CD8 T cells during chronic infection.

Original publication

DOI

10.1016/j.celrep.2020.108078

Type

Journal article

Journal

Cell Rep

Publication Date

25/08/2020

Volume

32

Keywords

CD8 T cells, chronic viral infection, phenotypic plasticity, singe cell RNA sequencing, tissue-specific phenotypes