Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neutrophils are the most abundant leukocytes in innate immunity where they elicit powerful effector functions to eliminate invading pathogens and modulate the adaptive as well as the innate immune response. Neutrophil function must be tightly regulated during inflammation and infection to avoid additional tissue damage. Increasing evidence suggests that transcription factors (TFs) function as key regulators to modulate transcriptional output, thereby controlling cell fate decision and the inflammatory responses. However, the molecular mechanisms underlying neutrophil differentiation and function during inflammation remain largely uncharacterized. Here, we provide a comprehensive overview of TFs known to be crucial for neutrophil maturation and in the signaling pathways that control neutrophil differentiation and activation. We also outline how emerging genomic and single-cell technologies may facilitate further discovery of neutrophil transcriptional regulators.

Original publication

DOI

10.1002/JLB.1RU1219-504RR

Type

Journal article

Journal

J Leukoc Biol

Publication Date

03/2020

Volume

107

Pages

419 - 430

Keywords

neutrophils, transcription factor, Animals, Cell Differentiation, Cellular Senescence, Gene Expression Regulation, Humans, Inflammation, Neutrophils, Transcription, Genetic