Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Professor Michael Dustin of the Kennedy Institute of Rheumatology comments on new research into boosting the immune system's response to cancer with cholesterol, in Nature

The ability to stimulate our immune system in the fight against cancer or autoimmune diseases is now a reality, but there are still challenges to overcome and further medical advances to pursue.

With 50% of people born after 1960 set to be diagnosed with some form of cancer during their lifetime, developing successful treatments is a key focus of biomedical research.

 

This work may give a new meaning to "good" cholesterol.
- Professor Michael Dustin

New research also published in Nature proposes a way to boost the function of anti-tumour T cells, using a metabolic trick to increase the level of cholesterol in the cells' membranes, bringing new hope to patients worldwide.

T cells determine the specificity of our immune response to foreign substances in the body, like tumour cells. They sense these substances through clusters of T-cell receptor proteins on a cell's surface, which then initiate T cell activation. This activation can be enhanced by a number of factors or substances, namely cholesterol on the cell membrane.

The research team has used a drug to stop cholesterol being converted into cholesterol ester, which led to higher cholesterol levels in the cell membrane of killer T cells, promoting clustering of T-cell receptors that bind to the surface of tumour cells. Higher-membrane cholesterol also led to an increase in the speed at which the T cell and tumour cell form a point of embrace called the immunological synapse, a crucial step in our immune response. Together, these factors promoted the release of molecules that trigger tumour-cell death.

"This work may give a new meaning to "good" cholesterol. The potential to combine this approach with an established immunotherapy like anti-PD-1 is exciting as drug combinations offer advantages for targeting heterogeneous or rapidly mutating disease agents- like cancer and viruses", 

Professor Dustin 's research at the Kennedy focuses on immunological synapse (IS), a term he first coined to describe the embrace between T cells and B cells that is necessary to mount an immune response. His current work aims to improve vaccines and immunotherapy by revealing the composition of particular structures related to immunological synapses, defined as synaptic ectosomes, as well as identify ways to manipulate their formation.

 

Image copyright: Nature.

NATURE | NEWS & VIEWS
Cancer immunotherapy: Killers on sterols

Associated article
Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism
by Yang et al.

 

The immunological synapse explained

 

Similar stories

Fat tissues can play a protective role against inflammation in the intestine

A new study in The EMBO Journal has revealed how fat tissues might provide a protective role in intestinal inflammation opening new lines of research into the treatment of inflammatory bowel diseases.

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

New drug offers hope for people with hand osteoarthritis

A new study, published in Science Translational Medicine by researchers at the University of Oxford has identified that Talarozole, a drug that is known to increase retinoic acid, was able to prevent osteoarthritis (OA) in disease models.

Two prestigious Hunterian Professorships awarded to NDORMS researchers

Conrad Harrison and Tom Layton have both been awarded Hunterian Professorships for 2022 by the Royal College of Surgeons of England

A new research computing platform advances the understanding of key biological processes in disease

To respond to advances in technology and try to answer an increasing range of biological questions, the Kennedy Institute has invested in a high-performance computing facility. We speak to Brian Marsden, Associate Professor of Research Informatics at the Kennedy to find out more.

Adalimumab is found to be a cost-effective treatment for early-stage Dupuytren’s disease

Researchers at the Kennedy Institute of Rheumatology and Oxford Population Health’s Health Economics Research Centre have found that anti-TNF treatment (adalimumab) is likely to be a cost-effective treatment for people affected by early-stage Dupuytren’s disease.