Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new interdisciplinary Oxford research programme will explore the relationship between metabolism and inflammation in metabolic diseases.

Our group will bring expertise in molecular controls of immune cell function. We will use the state-of-the-art genomic technologies to examine the macrophage-neutrophil cross-talk in obesity and the role of the IRF5 pathway by analysing various adipose tissue depots. - Professor Irina Udalova

Led by Professor Robin Choudhury, of the Radcliffe Department of Medicine, the project goes from big data analysis to find a causal relationship between inflammatory factors and the development of type 2 diabetes and related disorders, to analysis of molecular and cellular mechanisms, to intervention studies.

Professor Irina Udalova, from the Kennedy Institute and a research partner on the project says: "Our group will bring expertise in molecular controls of immune cell function. We have recently demonstrated that modulation of a transcription factor IRF5 impacts on the relative mass of different adipose tissue depots and thus insulin sensitivity in obesity. We will use the state-of-the-art genomic technologies to examine the macrophage-neutrophil cross-talk in obesity and the role of the IRF5 pathway by analysing various adipose tissue depots."

This is one of two projects funded by Novo Nordisk Foundation, which combine the fields of immunology and metabolic research and bring together investigators from Oxford, the University of Copenhagen, Denmark, and the Karolinska Institutet in Sweden.

Obesity, insulin resistance, type 2 diabetes (T2D) and associated cardiovascular disease (CVD) - all metabolic diseases - are an epidemic global health problem. Almost 400 million people worldwide have type 2 diabetes, and total deaths from the condition are anticipated to rise by more than 50% in the next 10 years. Therefore, research that addresses the causes and complications of these diseases and delivers effective treatment for them is of paramount importance.

Professor Choudhury says: "The goal of the programme is to revise the way we regard diabetes spectrum diseases by learning more about the role of inflammation in the pathogenesis of the disease and, in particular, the vascular complications. If successful we may open up new therapeutic possibilities that go beyond merely treating blood sugar and instead target biologically relevant pathways and processes."

Read more here.

Similar stories

Behind enemy lines: research finds a new ally in the fight against cardiovascular disease hidden within the vessel wall itself

A new study reveals the existence of a powerful ally in the fight against cardiovascular disease, a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, a molecule which fosters "good" macrophage behaviour within the vessel wall.

A drug being trialled to treat cancer, could be the key to reducing gut inflammation

Published in Nature Communications, a new study reveals a new signalling pathway behind macrophage inflammatory activity

Single-cell ancestry vaccine research funded by the Chan Zuckerberg Initiative

The Chan Zuckerberg Initiative (CZI) has provided $2 million in funding to investigate how our ancestry and diversity influence the way that vaccines work in our cells.

Large genetic study suggests shared biological processes cause irritable bowel syndrome and anxiety

An international study of more than 50,000 people with irritable bowel syndrome (IBS) has revealed that IBS symptoms may be caused by the same biological processes as conditions such as anxiety. The research highlights the close relationship between brain and gut health and paves the way for development of new treatments.

New therapeutic targets identified to treat inflammatory bowel disease

Millions of patients with ulcerative colitis or Crohn’s disease, collectively known as inflammatory bowel disease (IBD), are given fresh hope as a new study shows why some of them do not respond to current treatments.

Labelling proteins through the diet gives new insights into how collagen-rich tissues change as we age

A new study, published in eLife, uses advanced tissue analysis technology to show how the incorporation of new proteins changes in bone and cartilage with age.