Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Metal-semiconductor nanocrystal heterostructures are model systems for understanding the interplay between the localized surface plasmon resonances in the metal domain and the relaxation of the excited carriers in the semiconductor domain. Here we report the synthesis of colloidal Au₂Cd (core)/CdSe (shell) nanocrystal heterostructures, which were characterized extensively with several structural and optical techniques, including time-resolved fluorescence and broad-band transient absorption spectroscopy (both below and above the CdSe band gap). The dynamics of the transient plasmon peak was dominated by the relaxation of hot carriers in the metal core, its spectral shape was independent of the pump wavelength, and the bleaching lifetime was about half a picosecond, comparable with the value found in the AuCd seeds used for the synthesis.

Original publication




Journal article


ACS Nano

Publication Date





1045 - 1053