Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ontogenetic, homeostatic, and functional deficiencies within immunoregulatory natural T (iNKT) lymphocytes underlie various inflammatory immune disorders including autoimmunity. Signaling events that control cell fate specification and molecular differentiation of iNKT cells are only partly understood. Here we demonstrate that these processes within iNKT cells require classical NF-κB signaling. Inhibition of NF-κB signaling blocks iNKT cell ontogeny at an immature stage and reveals an apparent, novel precursor in which negative selection occurs. Most importantly, this block occurs due to a lack of survival signals, as Bcl-xL overexpression rescues iNKT cell ontogeny. Maturation of immature iNKT cell precursors induces Bcl-2 expression, which is defective in the absence of NF-κB signaling. Bcl-xL overexpression also rescues this maturation-induced Bcl-2 expression. Thus, antiapoptotic signals relayed by NF-κB critically control cell fate specification and molecular differentiation of iNKT cells and, hence, reveal a novel role for such signals within the immune system.

Original publication




Journal article


Journal of Immunology

Publication Date





2265 - 2273