Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Erythrocytes are anucleated cells devoid of organelles. Expulsion of the nucleus from erythroblasts leads to the formation of reticulocytes, which still contain organelles. The mechanisms responsible for the final removal of organelles from developing erythroid cells are still being elucidated. Mitochondria are the most abundant organelles to be cleared for the completion of erythropoiesis. Macroautophagy, referred to as autophagy, is a regulated catabolic pathway consisting of the engulfment of cytoplasmic cargo by a double membraned-vesicle, the autophagosome, which typically then fuses to lysosomal compartments for the degradation of the sequestered material. Early electron microscopic observations of reticulocytes suggested the autophagic engulfment of mitochondria (mitophagy) as a possible mechanism for mitochondrial clearance in these. Recently, a number of studies have backed this hypothesis with molecular evidence. Indeed, the absence of Nix, which targets mitochondria to autophagosomes, or the deficiency of proteins in the autophagic pathway lead to impaired mitochondrial clearance from developing erythroid cells. Importantly, however, the extent to which the absence of mitophagy affects erythroid development differs depending on the model and gene investigated. This review will therefore focus on comparing the different studies of mitophagy in erythroid development and highlight some of the remaining controversial points.

Original publication

DOI

10.4161/cc.9.10.11603

Type

Journal article

Journal

Cell Cycle

Publication Date

15/05/2010

Volume

9

Pages

1901 - 1906

Keywords

Anemia, Animals, Apoptosis, Autophagy, Erythrocytes, Humans, Mitochondria, Reactive Oxygen Species