Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The earliest vascular structures (blood island-like) in the embryonic heart are clusters of angioblasts and nucleated red blood cells (NRBCs), which differentiate into endothelial cells and erythrocytes, respectively. Our purpose was to define the area and chronology of NRBC appearance in the mouse embryonic heart at the stages before a patency between coronary vessels and peripheral circulation is established (10.5-13.5 dpc). Before and at the onset of vascularization, NBCs were not present within the proepicardium; however, Ter/119+ differentiating erythroblasts and single scattered CD45+ were found in the heart beginning from 10.5 dpc. The Ter/119+ cells were in close apposition to angioblasts (PECAM1+) and were recognized as components of blood island-like structures or vascular vesicles in transmission electron microscope and were located mostly in the subepicardium. Some of the NRBCs were not accompanied by angioblasts and located close to the endocardial endothelium or at the border of the endocardial endothelium or in the subepicardium. These erythroblasts were beginning to assemble with angioblasts. CD34+ NBCs as well as progenitor cells of erythroid lineage were not detected in the heart at these stages of development. The state of differentiation of NRBCs of blood islands was similar/the same as the morphology of circulating blood cells at the respective stages of embryo development. The presence of mature NRBCs in the subendocardial area and lack of progenitor cells of erythroid lineage within the heart indicate that erythroid commitment occurs outside the heart. We suggest that NRBCs enter the heart from the blood stream at 10.5-12 dpc independently from angioblasts.

Original publication

DOI

10.1002/ar.a.20311

Type

Journal article

Journal

Anat Rec A Discov Mol Cell Evol Biol

Publication Date

03/2006

Volume

288

Pages

223 - 232

Keywords

Animals, Coronary Vessels, Endothelium, Erythroblasts, Erythrocytes, Erythropoiesis, Female, Heart, Mice, Myocardium