Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

T cell recognition of antigen is a physical process that requires formation of a cell-cell junction that is rich in active force generation. Recently a biomolecular force probe was used to examine how the T cell receptor (TCR)-pMHC interaction responds to force and the consequences of force-dependent interactions for T cell activation. While adhesion and costimulatory molecules in the immunological synapse impact upon the overall force of the interaction, these results suggest that the TCR uses a force-dependent bond - a catch bond - and that it may therefore be important to consider the TCR-pMHC interaction in isolation in the early phases of the decision process. We discuss here these findings in the context of other work on the impact of forces on the TCR and the quantification of interaction in interfaces.

Original publication

DOI

10.1016/j.it.2014.10.007

Type

Report

Publication Date

12/2014

Volume

35

Pages

597 - 603