Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mechanical stimuli are important signals in articular cartilage, but what mediates them is unknown. We have shown that extracellular-signal-regulated kinase was activated on cutting and loading articular cartilage, and deduced that this was due to the release of bFGF (basic fibroblast growth factor) from the tissue. bFGF was shown to be extracellular, and by immunohistochemistry, was present in the pericellular matrix of articular chondrocytes attached to the heparan sulphate proteoglycan perlecan. We propose a novel mechanotransduction model, whereby pericellular bFGF, a short distance from the cell surface, becomes available to the cell surface tyrosine kinase receptors when articular cartilage is loaded.

Original publication




Journal article


Biochem Soc Trans

Publication Date





456 - 457


Animals, Cartilage, Articular, Fibroblast Growth Factor 2, Humans, Mechanotransduction, Cellular