Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane proteinase that degrades the pericellular extracellular matrix (ECM) and is expressed in many migratory cells, including invasive cancer cells. MT1-MMP has been shown to localize at the migration edge and to promote cell migration; however, it is not clear how the enzyme is regulated during the migration process. Here, we report that MT1-MMP is internalized from the surface and that this event depends on the sequence of its cytoplasmic tail. Di-leucine (Leu571-572 and Leu578-579) and tyrosine573 residues are important for the internalization, and the mu2 subunit of adaptor protein 2, a component of clathrin-coated pits for membrane protein internalization, was found to bind to the LLY573 sequence. MT1-MMP was internalized predominantly at the adherent edge and was found to colocalize with clathrin-coated vesicles. The mutations that disturb internalization caused accumulation of the enzyme at the adherent edge, though the net proteolytic activity was not affected much. Interestingly, whereas expression of MT1-MMP enhances cell migration and invasion, the internalization-defective mutants failed to promote either activity. These data indicate that dynamic turnover of MT1-MMP at the migration edge by internalization is important for proper enzyme function during cell migration and invasion.

Original publication




Journal article


J Cell Biol

Publication Date





1345 - 1356


Animals, CHO Cells, Cell Movement, Clathrin-Coated Vesicles, Cricetinae, Cytoplasm, Humans, Matrix Metalloproteinase 1, Matrix Metalloproteinases, Metallothionein, Protein Transport, Recombinant Fusion Proteins, Recombinant Proteins, Tissue Inhibitor of Metalloproteinase-2, Transfection, Transferrin