Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

CD4+ T cells in the mouse can be subdivided into two fractions based on the level of expression of the CD45RB determinant. Previous studies have shown that these subsets are functionally distinct. We have further characterized the properties of these subpopulations in vivo by injecting them into C. B-17 scid mice. The animals restored with the CD45RBhighCD4+ T cell population developed a lethal wasting disease with severe mononuclear cell infiltrates into the colon and elevated levels of IFN-gamma mRNA. In contrast, animals restored with the reciprocal CD45RBlow subset or with unfractionated CD4+ T cells did not develop the wasting or colitis. Importantly, the co-transfer of the CD45RBlow population with the CD45RBhigh population prevented the wasting disease and colitis. These data indicate that important regulatory interactions occur between the CD45RBhigh and CD45RBlowCD4+ T cell subsets and that disruption of this mechanism has fatal consequences.

Original publication




Journal article


Int Immunol

Publication Date





1461 - 1471


Animals, CD4-Positive T-Lymphocytes, Colitis, Female, Flow Cytometry, Inflammatory Bowel Diseases, Interferon-gamma, Leukocyte Common Antigens, Mice, Mice, Inbred BALB C, Mice, SCID, Polymerase Chain Reaction, RNA, Messenger, Weight Loss