Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Immune-mediated inflammatory arthritis (IMIA) is a heterogeneous group of diseases including rheumatoid arthritis (RA), psoriatic arthritis (PsA), and spondyloarthritis (SpA). Disease-modifying antirheumatic drugs (DMARDs) target very different cellular components of the disease processes. Characterization of the pathobiological subtypes of IMIA could provide more specific treatment approaches for each disease. For example, RA has been proposed to consist of at least three synovial pathotypes (lymphoid, myeloid, and fibroid), and only a subgroup of RA patients have erosive disease. The objective of this study was to evaluate the effects of various DMARDs on different synovial cell subsets using human ex vivo models of IMIA. METHODS: Synovial fluid and blood samples were obtained from a study population consisting of patients with RA, PsA, or peripheral SpA with at least one swollen joint (n = 18). The DMARDs used in this study were methotrexate, adalimumab, etanercept, tocilizumab, anakinra, ustekinumab, secukinumab, tofacitinib, and baricitinib. Paired synovial fluid mononuclear cells (SFMCs), peripheral blood mononuclear cells (PBMCs), and fibroblast-like synovial cells (FLSs) were used in three different previously optimized ex vivo models. RESULTS: In SFMCs cultured for 48 hours, all DMARDs except anakinra decreased the production of monocyte chemoattractant protein (MCP)-1. In SFMCs cultured for 21 days, only the two tumor necrosis factor alpha (TNFα) inhibitors adalimumab and etanercept decreased the secretion of tartrate-resistant acid phosphatase (P < 0.01, P < 0.001). In the FLS and PBMC 48-hour co-cultures, only tocilizumab (P < 0.001) and the two Janus kinase inhibitors tofacitinib and baricitinib (both P < 0.05) decreased the production of MCP-1 by around 50%. CONCLUSION: TNFα inhibition was effective in preventing inflammatory osteoclastogenesis, whereas tocilizumab, tofacitinib, and baricitinib had superior efficacy in cultures dominated by FLSs. Taken together, this study reveals that responses to cytokine inhibitors associate with cellular composition in models of IMIA. In particular, this study provides new evidence on the differential effect of DMARDs on leukocytes compared with stromal cells.

Original publication




Journal article


ACR Open Rheumatol

Publication Date





3 - 10