Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a tumor necrosis factor superfamily member, targets death receptors and selectively kills malignant cells while leaving normal cells unaffected. However, unlike most cancers, many osteosarcomas are resistant to TRAIL. To investigate this resistance, we characterized the response of MG-63 osteosarcoma cells and hPOB-tert osteoblast-like cells to TRAIL and agonist antibodies to death receptor 4 (DR4) and death receptor 5 (DR5). We found that MG-63 osteosarcoma cells and hPOB-tert osteoblast-like cells show no or very little response to TRAIL or a DR4 agonist, but MG-63 cells undergo apoptosis in response to a DR5 agonist. Analysis of TRAIL receptor expression showed that normal osteoblastic and osteosarcoma cells express a variety of TRAIL receptors but this does not correlate to TRAIL responsiveness. Production of the soluble decoy receptor osteoprotegerin also could not explain TRAIL resistance. We show that TRAIL activates the canonical caspase-dependent pathway, whereas treatment with cycloheximide increases the sensitivity of MG-63 cells to TRAIL and anti-DR5 and can also sensitize hPOB-tert cells to both agents. Proapoptotic and antiapoptotic protein expression does not significantly differ between MG-63 and hPOB-tert cells or change following treatment with TRAIL or anti-DR5. However, sequencing the death domain of DR4 in several osteoblast-like cells showed that MG-63 osteosarcoma cells are heterozygous for a dominant-negative mutation, which can confer TRAIL resistance. These results suggest that although the dominant-negative form of the receptor may block TRAIL-induced death, an agonist antibody to the active death receptor can override cellular defenses and thus provide a tailored approach to treat resistant osteosarcomas.

Original publication

DOI

10.1158/1535-7163.MCT-07-0275

Type

Journal article

Journal

Mol Cancer Ther

Publication Date

12/2007

Volume

6

Pages

3219 - 3228

Keywords

Apoptosis, Base Sequence, Caspases, Cell Line, Tumor, Cycloheximide, DNA Primers, Humans, Mutation, Osteoprotegerin, Receptors, TNF-Related Apoptosis-Inducing Ligand, TNF-Related Apoptosis-Inducing Ligand