Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In human T lymphocytes the antigen receptor (Ti) is associated non-covalently on the cell surface with the invariant T3 antigen which comprises 3 chains: two glycosylated polypeptides of relative molecular mass 26,000 (Mr 26K) and 21K (gamma and delta) and one non-N-glycosylated polypeptide of Mr 19K (epsilon). The proposed function of T3 is to transduce the activation signals delivered via the antigen receptor. Recently we have shown that phorbol esters, which stimulate protein kinase C, can induce phosphorylation of the gamma subunit of the T3 antigen. But the critical question is whether T3 phosphorylation occurs as a normal consequence of immune activation of T lymphocytes. In this respect, it has been shown that immune stimulation of murine T cells results in phosphorylation of Ti-associated polypeptides that may be the functional analogues of the human T3 antigen. We have therefore monitored T3 phosphorylation after exposure of human T cells to antigen or phytohaemagglutinin (PHA). The data show that both stimuli initiate phosphorylation of the gamma subunit of the T3 antigen which indicates that T3 phosphorylation is a physiological response to immune activation.

Original publication

DOI

10.1038/325540a0

Type

Journal article

Journal

Nature

Publication Date

05/02/1987

Volume

325

Pages

540 - 542

Keywords

Antigens, Differentiation, T-Lymphocyte, Antigens, Surface, Antigens, Viral, Hemagglutinin Glycoproteins, Influenza Virus, Hemagglutinins, Viral, Humans, Influenza A virus, Lymphocyte Activation, Phosphorylation, Phytohemagglutinins, Protein Kinase C, T-Lymphocytes