Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Experiments were designed to test the hypothesis that chronic exposure to tumor necrosis factor alpha (TNF) alters the function of activated T lymphocytes. Pretreatment of tetanus toxoid-specific T cell clones with TNF for up to 16 d impaired rechallenge proliferative responses to antigen in a dose- and time-dependent fashion. IL-2 and PHA responses were preserved. Prolonged treatment with TNF impaired production of IL-2, IL-10, IFN gamma, TNF, and lymphotoxin (LT) following stimulation with immobilized OKT3, and resulted in suboptimal expression of the IL-2R alpha chain (Tac) but not CD3, CD4, or HLA-DR antigens, when compared to untreated control cells. By contrast, pretreatment of T cells for prolonged periods in vitro with neutralizing anti-TNF monoclonal antibodies (mAb) enhanced proliferative responses, increased lymphokine production, and upregulated Tac expression following stimulation with OKT3. To determine whether TNF exerts immunosuppressive effects on T cells in vivo, we studied cell-mediated immunity in patients with active rheumatoid arthritis (RA), before and after treatment with a chimeric anti-TNF mAb. Treatment with anti-TNF restored the diminished proliferative responses of PBMC to mitogens and recall antigens towards normal in all patients tested. These data demonstrate that persistent expression of TNF in vitro and in vivo impairs cell-mediated immune responses.

Original publication

DOI

10.1172/JCI117394

Type

Journal article

Journal

J Clin Invest

Publication Date

08/1994

Volume

94

Pages

749 - 760

Keywords

Antibodies, Monoclonal, Antigen-Presenting Cells, Antigens, CD4, Arthritis, Rheumatoid, Cells, Cultured, Dose-Response Relationship, Drug, HLA-DR Antigens, Humans, Interleukin-2, Lymphocyte Activation, Lymphokines, Receptor-CD3 Complex, Antigen, T-Cell, T-Lymphocytes, Tumor Necrosis Factor-alpha