Nanoscale ligand spacing influences receptor triggering in T cells and NK cells.
Delcassian D., Depoil D., Rudnicka D., Liu M., Davis DM., Dustin ML., Dunlop IE.
Bioactive nanoscale arrays were constructed to ligate activating cell surface receptors on T cells (the CD3 component of the TCR complex) and natural killer (NK) cells (CD16). These arrays are formed from biofunctionalized gold nanospheres with controlled interparticle spacing in the range 25-104 nm. Responses to these nanoarrays were assessed using the extent of membrane-localized phosphotyrosine in T cells stimulated with CD3-binding nanoarrays and the size of cell contact area for NK cells stimulated with CD16-binding nanoarrays. In both cases, the strength of response decreased with increasing spacing, falling to background levels by 69 nm in the T cell/anti-CD3 system and 104 nm for the NK cell/anti-CD16 system. These results demonstrate that immune receptor triggering can be influenced by the nanoscale spatial organization of receptor/ligand interactions.