Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NF-κB is a key regulator of immune gene expression in metazoans. It is currently unclear what changes occurred in NF-κB during animal evolution and what features remained conserved. To address this question, we compared the biochemical and functional properties of NF-κB proteins derived from human and the starlet sea anemone (Nematostella vectensis) in 1) a high-throughput assay of in vitro preferences for DNA sequences, 2) ChIP analysis of in vivo recruitment to the promoters of target genes, 3) a LUMIER-assisted examination of interactions with cofactors, and 4) a transactivation assay. We observed a remarkable evolutionary conservation of the DNA binding preferences of the animal NF-κB orthologs. We also show that NF-κB dimerization properties, nuclear localization signals, and binding to cytosolic IκBs are conserved. Surprisingly, the Bcl3-type nuclear IκB proteins functionally pair up only with NF-κB derived from their own species. The basis of the differential NF-κB recognition by IκB subfamilies is discussed.

Original publication

DOI

10.1074/jbc.M113.451153

Type

Journal article

Journal

J Biol Chem

Publication Date

19/04/2013

Volume

288

Pages

11546 - 11554

Keywords

Animals, B-Cell Lymphoma 3 Protein, Biological Evolution, Humans, NF-kappa B, Nuclear Localization Signals, Protein Multimerization, Proto-Oncogene Proteins, Sea Anemones, Species Specificity, Transcription Factors