Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Infectious myonecrosis virus (IMNV) has been causing a progressive disease in farm-reared shrimps in Brazil and Indonesia. Immunodiagnostic methods for IMNV detection, although reliable, are not employed currently because monoclonal antibodies (MAbs) against this virus are not available. In this study, a fragment of the IMNV major capsid protein gene, comprising amino acids 300-527 (IMNV(300-527)), was cloned and expressed in Escherichia coli. The nucleotide sequence of the recombinant IMNV(300-527) fragment displayed a high degree of identity to the major capsid protein of IMNV isolates from Brazil (99%) and Indonesia (98%). Ten MAbs were generated against the expressed fragment, and eight of these, mostly IgG(2a) or IgG(2b), were able to bind to IMNV in tissue extracts from shrimps infected naturally in immunodot-blot assays. Six of these MAbs recognized a approximately 100 kDa protein in a Western-blot, which is the predicted mass of IMNV major capsid protein, and also bound to viral inclusions present in muscle fibroses and in coagulative myonecrosis, as demonstrated by immunohistochemistry. Among all those MAbs created, four did not cross-react with non-infected shrimp tissues; this observation supports their applicability as a sensitive and specific immunodiagnosis of IMNV infection in shrimps.

Original publication

DOI

10.1016/j.jviromet.2010.07.020

Type

Journal article

Journal

J Virol Methods

Publication Date

10/2010

Volume

169

Pages

169 - 175

Keywords

Animals, Antibodies, Monoclonal, Antibodies, Viral, Blotting, Western, Brazil, Capsid Proteins, Cloning, Molecular, Escherichia coli, Gene Expression, Immunoglobulin G, Indonesia, Molecular Sequence Data, Molecular Weight, Muscles, Penaeidae, RNA, Viral, Recombinant Proteins, Sequence Analysis, DNA, Totiviridae