Search results
Found 10061 matches for
Novel methodology to discern predictors of remission and patterns of disease activity over time using rheumatoid arthritis clinical trials data.
OBJECTIVES: To identify predictors of remission and disease activity patterns in patients with rheumatoid arthritis (RA) using individual participant data (IPD) from clinical trials. METHODS: Phase II and III clinical trials completed between 2002 and 2012 were identified by systematic literature review and contact with UK market authorisation holders. Anonymised baseline and follow-up IPD from non-biological arms were amalgamated. Multiple imputation was used to handle missing outcome and covariate information. Random effects logistic regression was used to identify predictors of remission, measured by the Disease Activity Score 28 (DAS28) at 6 months. Novel latent class mixed models characterised DAS28 over time. RESULTS: IPD of 3290 participants from 18 trials were included. Of these participants, 92% received methotrexate (MTX). Remission rates were estimated at 8.4%(95%CI 7.4%to9.5%) overall, 17%(95%CI 14.8%to19.4%) for MTX-naïve patients with early RA and 3.2% (95% CI 2.4% to 4.3%) for those with prior MTX exposure at entry. In prior MTX-exposed patients, lower baseline DAS28 and MTX reinitiation were associated with remission. In MTX-naïve patients, being young, white, male, with better functional and mental health, lower baseline DAS28 and receiving concomitant glucocorticoids were associated with remission. Three DAS28 trajectory subpopulations were identified in MTX-naïve and MTX-exposed patients. A number of variables were associated with subpopulation membership and DAS28 levels within subpopulations. CONCLUSIONS: Predictors of remission differed between MTX-naïve and prior MTX-exposed patients at entry. Latent class mixed models supported differential non-biological therapy response, with three distinct trajectories observed in both MTX-naïve and MTX-exposed patients. Findings should be useful when designing future RA trials and interpreting results of biomarker studies.
Ultra-fast super-resolution imaging of biomolecular mobility in tissues
Super-resolution techniques have addressed many biological questions, yet molecular quantification at rapid timescales in live tissues remains challenging. We developed a light microscopy system capable of sub-millisecond sampling to characterize molecular diffusion in heterogeneous aqueous environments comparable to interstitial regions between cells in tissues. We demonstrate our technique with super-resolution tracking of fluorescently labelled chemokine molecules in a collagen matrix and ex vivo lymph node tissue sections, outperforming competing methods.
Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome.
Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify a pericyte/mural cell state with potential immunological functions. The identification of cellular properties associated with these structures and the molecular and functional interactions identified by this analysis may provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Why does understanding the biology of fibroblasts in immunity really matter?
Fibroblasts are known for their ability to make and modify the extracellular matrix. However, there is more to them than meets the eye. It is now clear that they help define tissue microenvironments and support immune responses in organs. As technology advances, we have started to uncover the secrets of fibroblasts. In this Essay, we present fibroblasts as not only the builders and renovators of tissue environments but also the rheostat cells for immune circuits. Although they perform location-specific functions, they do not have badges of fixed identity. Instead, they display a spectrum of functional states and can swing between these states depending on the needs of the organ. As fibroblasts participate in a range of activities both in health and disease, finding the key factors that alter their development and functional states will be an important goal to restore homeostasis in maladapted tissues.
Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19.
BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.
The future of traction force microscopy
Animal cells continuously sense and respond to mechanical force. Quantifying these forces remains a major challenge in bioengineering; yet such measurements are essential for the understanding of cellular function. Traction force microscopy is one of the most successful and broadly-used force probing technologies, chosen for the simplicity of its implementation, flexibility to mimic cellular conditions, and well-established analysis pipe-line. Here, we review the accomplishments, and discuss the applicability and limitations of traction force microscopy. We explain fundamental shortcomings of the method, summarise latest improvements, and outline future pathways towards the impact of the method, especially considering latest developments in state-of-the-art super-resolution fluorescence imaging. In light of the increasing discovery of the importance of mechanobiology in cell physiology, we envisage traction force microscopy to remain a major player for quantifying mechanical forces in living cells.
Quantifying Immune Cell Force Generation Using Traction Force Microscopy.
Immune cells rely on the generation of mechanical force to carry out their function. Consequently, there is a pressing need for quantitative methodologies that permit the probing of the spatio-temporal distribution of mechanical forces generated by immune cells. In this chapter, we provide a guide to quantify immune cell force generation using traction force microscopy (TFM), with a specific focus on its application to the study of the T-cell immunological synapse.
Cellular census of human fibrosis defines functionally distinct stromal cell types and states.
Fibrotic disorders are some of the most devastating and poorly treated conditions in developed nations, yet effective therapeutics are not identified for many of them. A major barrier for the identification of targets and successful clinical translation is a limited understanding of the human fibrotic microenvironment. Here, we construct a stromal cell atlas of human fibrosis at single cell resolution from patients with Dupuytren's disease, a localized fibrotic condition of the hand. A molecular taxonomy of the fibrotic milieu characterises functionally distinct stromal cell types and states, including a subset of immune regulatory ICAM1+ fibroblasts. In developing fibrosis, myofibroblasts exist along an activation continuum of phenotypically distinct populations. We also show that the tetraspanin CD82 regulates cell cycle progression and can be used as a cell surface marker of myofibroblasts. These findings have important implications for targeting core pathogenic drivers of human fibrosis.
Cytoskeletal actin patterns shape mast cell activation.
Activation of immune cells relies on a dynamic actin cytoskeleton. Despite detailed knowledge of molecular actin assembly, the exact processes governing actin organization during activation remain elusive. Using advanced microscopy, we here show that Rat Basophilic Leukemia (RBL) cells, a model mast cell line, employ an orchestrated series of reorganization events within the cortical actin network during activation. In response to IgE antigen-stimulation of FCε receptors (FCεR) at the RBL cell surface, we observed symmetry breaking of the F-actin network and subsequent rapid disassembly of the actin cortex. This was followed by a reassembly process that may be driven by the coordinated transformation of distinct nanoscale F-actin architectures, reminiscent of self-organizing actin patterns. Actin patterns co-localized with zones of Arp2/3 nucleation, while network reassembly was accompanied by myosin-II activity. Strikingly, cortical actin disassembly coincided with zones of granule secretion, suggesting that cytoskeletal actin patterns contribute to orchestrate RBL cell activation.
Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM-FRAP.
Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function. Yet, despite the establishment of quantitative methodologies correlating independent measurements of cell mechanics and its underlying molecular kinetics, explicit evidence and knowledge of the sensitivity of the feedback mechanisms of cells controlling their adaptive mechanics behavior remains elusive. Here, a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced offering simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells. Systematic application of this optomechanical atomic force microscopy-fluorescence recovery after photobleaching platform reveals changes in the actin turnover and filament lengths of ventral actin stress fibers in response to constant mechanical force at the apical actin cortex with a dynamic range from 0.1 to 10 nN, highlighting a direct relationship of active mechanosensation and adaptation of the cellular actin cytoskeleton. Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open-up unprecedented insights into adaptive mechanobiological mechanisms of cells.
Not All T Cell Synapses Are Built the Same Way.
T cells comprise functionally diverse subtypes. Although activated via a conserved scheme of antigen recognition by their T cell receptor, they elicit heterogeneous activation and effector responses. Such functional diversity has been appreciated in gene expression studies, functional assays, and disease models. Yet, our understanding of the principles underlying T cell subtype-specific activation and antigen recognition in the immunological synapse remains limited. This is primarily due to difficulties in primary T cell visualization at high spatiotemporal resolution and the adoption of tractable transformed T cell systems for cell biological experiments that may not correctly represent primary T cell constitutional diversity. Here, we discuss recent findings regarding the architectural and dynamic diversity of the immunological synapse and state-of-the-art methodologies that can be utilized to provide clues on how biological and biophysical differences in synaptic make-up could govern functional divergences in T cell subtypes.
Author Correction: Cellular census of human fibrosis defines functionally distinct stromal cell types and states.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses.
Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.
Super-Resolved Traction Force Microscopy (STFM).
Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.
Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy.
Nanoscale spacing between the plasma membrane and the underlying cortical actin cytoskeleton profoundly modulates cellular morphology, mechanics, and function. Measuring this distance has been a key challenge in cell biology. Current methods for dissecting the nanoscale spacing either limit themselves to complex survey design using fixed samples or rely on diffraction-limited fluorescence imaging whose spatial resolution is insufficient to quantify distances on the nanoscale. Using dual-color super-resolution STED (stimulated-emission-depletion) microscopy, we here overcome this challenge and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between the maximum density peaks of the cortex and the membrane were bi-modally distributed with mean values of 50 ± 15 nm and 120 ± 40 nm, respectively. Taken together with the finite width of the cortex, our results suggest that in some regions the cortical actin is closer than 10 nm to the membrane and a maximum of 20 nm in others.
Self-organizing actin patterns shape membrane architecture but not cell mechanics.
Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.
Addendum: Precise tuning of gene expression levels in mammalian cells.
Following re-sequencing of the miSFIT constructs used in the paper, two of the construct variants inserted into the 3'UTR of PD-1, namely '12C' and '17A, 18G', have been found to contain additional insertions not present in the other construct variants. The data points corresponding to these constructs in Figs. 2c, f and Supplementary Fig. 9 are therefore no longer valid. However the overall conclusion that step-wise control over gene expression levels using the miSFIT constructs remains unaffected by these errors. Updated versions of Fig. 2 and Supplementary Fig. 9 are presented in the accompanying Addendum.
Characterisation of a pathogenic non-migratory fibroblast population in systemic sclerosis skin.
Fibroblasts are central to pathogenesis of systemic sclerosis (SSc). However, studies of conventional explant fibroblast cultures incompletely reflect disease biology and treatment response. We isolated a second non-migratory "resident" population of fibroblasts from skin biopsies after outgrowth of explant "migratory" cells. These non-motile resident fibroblasts were compared with migratory cells from the same biopsy, using functional studies, bulk and scRNAseq, and localised in situ by multichannel immunofluorescence. Migratory and resident fibroblast populations in SSc showed distinct pro-fibrotic characteristics and gene expression for pathogenic pathways differing by stage and autoantibody subgroup. TGFβ signalling was highly active in migratory fibroblasts in early stage dcSSc. Conversely, resident fibroblasts had less upregulated TGFβ signalling, especially in late dcSSc. Increased chemokine expression was a hallmark of resident fibroblasts at all stages. In vitro studies confirmed differential response to TGFβ1 and CCL2 between migratory and resident cells. We suggest that migratory fibroblasts are especially important in early skin disease whereas non-migratory fibroblasts may have a regulatory role and contribute more to fibrosis in later stage disease. Thus, we have identified a pathogenic fibroblast population in SSc, not isolated by conventional explant culture, that could play an important role in fibrosis and be targeted therapeutically.
Precise tuning of gene expression output levels in mammalian cells
ABSTRACTPrecise, analogue regulation of gene expression is critical for development, homeostasis and regeneration in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity, while RNA interference (RNAi) can lead to pervasive off-target effects and unpredictable levels of repression. Here we report on a method for the precise control of gene expression levels in mammalian cells based on engineered, synthetic microRNA response elements (MREs). To develop this system, we established a high-throughput sequencing approach for measuring the efficacy of thousands of miR-17 MRE variants. This allowed us to create a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to control the expression of user specified genes. To demonstrate the value of this technology, we used a panel of miSFITs to tune the expression of a peptide antigen in a mouse melanoma model. This analysis revealed that antigen expression level is a key determinant of the anti-tumour immune response in vitro and in vivo. miSFITs are a powerful tool for modulating gene expression output levels with applications in research and cellular engineering.
Self-Maintaining CD103+ Cancer-Specific T Cells Are Highly Energetic with Rapid Cytotoxic and Effector Responses.
Enrichment of CD103+ tumor-infiltrating T lymphocytes (TIL) is associated with improved outcomes in patients. However, the characteristics of human CD103+ cytotoxic CD8+ T cells (CTL) and their role in tumor control remain unclear. We investigated the features and antitumor mechanisms of CD103+ CTLs by assessing T-cell receptor (TCR)-matched CD103+ and CD103- cancer-specific CTL immunity in vitro and its immunophenotype ex vivo Interestingly, we found that differentiated CD103+ cancer-specific CTLs expressed the active form of TGFβ1 to continually self-regulate CD103 expression, without relying on external TGFβ1-producing cells. The presence of CD103 on CTLs improved TCR antigen sensitivity, which enabled faster cancer recognition and rapid antitumor cytotoxicity. These CD103+ CTLs had elevated energetic potential and faster migration capacity. However, they had increased inhibitory receptor coexpression and elevated T-cell apoptosis following prolonged cancer exposure. Our data provide fundamental insights into the properties of matured human CD103+ cancer-specific CTLs, which could have important implications for future designs of tissue-localized cancer immunotherapy strategies.