Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Specialized B cells residing in the splenic marginal zone (MZ) continuously survey the blood for antigens and are important for immunity to systemic infections. However, the cues that uniquely attract cells to the MZ have not been defined. Previous work demonstrated that mice deficient in cannabinoid receptor 2 (CB2) have decreased numbers of MZ B cells but it has been unclear whether CB2 regulates MZ B cell development or positioning. We show that MZ B cells are highly responsive to the CB2 ligand 2-arachidonylglycerol (2-AG) and that CB2 antagonism rapidly displaces small numbers of MZ B cells to the blood. Antagonism for longer durations depletes MZ B cells from the spleen. In mice deficient in sphingosine-1-phosphate receptor function, CB2 antagonism causes MZ B cell displacement into follicles. Moreover, CB2 overexpression is sufficient to position B cells to the splenic MZ. These findings establish a role for CB2 in guiding B cells to the MZ and in preventing their loss to the blood. As a consequence of their MZ B cell deficiency, CB2-deficient mice have reduced numbers of CD1d-high B cells. We show that CB2 deficiency results in diminished humoral responses to a CD1d-restricted systemic antigen.

Original publication

DOI

10.1084/jem.20111083

Type

Journal article

Journal

J Exp Med

Publication Date

26/09/2011

Volume

208

Pages

1941 - 1948

Keywords

Animals, Antibodies, Antigens, CD, Arachidonic Acids, B-Lymphocytes, Endocannabinoids, Glycerides, Immunity, Humoral, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptor, Cannabinoid, CB2, Receptors, Lysosphingolipid, Spleen