Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumour necrosis factor-alpha (TNF-alpha) has been implicated as an important inflammatory mediator. In vitro, TNF-alpha is reported to activate human polymorphonuclear neutrophils (PMN), inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-alpha are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-alpha molecule, four TNF-alpha derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3-7 selected hydrophilic or hydrophobic amino acids in the original TNF-alpha genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55) or the 75 kDa (p75) TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-alpha is discussed.

Original publication

DOI

10.1155/S0962935193000055

Type

Journal article

Journal

Mediators Inflamm

Publication Date

1993

Volume

2

Pages

41 - 48