Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In this study we have compared the effects of granulocyte macrophage colony stimulating factor (GM-CSF) on purified normal blood monocytes, with two other haemopoietic growth factors, Interleukin (IL-) 3 and Macrophage (M-)CSF on HLA class I, class II and intercellular adhesion molecule 1 (ICAM-1) expression in the presence and absence of dexamethasone (Dex). IL-3 alone, like GM-CSF, was a weak inducer of HLA class II expression but in combination with Dex markedly enhanced HLA-DR, DP and DQ expression. Similar changes were observed for HLA class I expression. The response to both IL-3 and GM-CSF was not additive in the presence of an optimal concentration of one cytokine and titrating concentrations of the other indicating that they may use common receptors and signal transduction mechanisms. Although IL-3 or GM-CSF alone also enhanced ICAM-1 expression, Dex inhibited both constitutive and the cytokine induced expression of this antigen. In contrast M-CSF, in the presence or absence of Dex, failed to enhance ICAM-1, HLA class I or II expression. These observations further highlight differences between the effects of the haemopoietic growth factors GM-CSF and IL-3 versus M-CSF in the regulation of monocyte function. Finally, the distinct effect of a combination of glucocorticoids with GM-CSF or IL-3 to induce high levels of HLA expression on human monocytes suggests they may have an important role during inflammatory conditions in vivo.

Type

Journal article

Journal

Eur Cytokine Netw

Publication Date

07/1992

Volume

3

Pages

373 - 380

Keywords

Cell Adhesion Molecules, Dexamethasone, Drug Synergism, Granulocyte-Macrophage Colony-Stimulating Factor, HLA-D Antigens, Histocompatibility Antigens Class I, Humans, In Vitro Techniques, Intercellular Adhesion Molecule-1, Interleukin-3, Macrophage Colony-Stimulating Factor, Monocytes, Up-Regulation