Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Mechanical and biological cues drive cellular signalling in cartilage development, health, and disease. Proteins of the primary cilium, implicated in transduction of biophysiochemical signals, control cartilage formation during skeletal development, but their influence in post-natal cartilage remains unknown. METHODS: Ift88fl/fl  and AggrecanCreERT2  mice were crossed to create a cartilage-specific, inducible knockout mouse AggrecanCreERT2 ;Ift88fl/fl . Tibial articular cartilage (AC) thickness was assessed, through adolescence and adulthood, by histomorphometry and integrity by OARSI score. In situ mechanisms were investigated by immunohistochemistry (IHC), RNA scope and qPCR of micro-dissected cartilage. OA was induced by surgical destabilisation (DMM). Mice voluntarily exercised using wheels. RESULTS: Deletion of IFT88 resulted in progressive reductions in medial AC thickness during adolescence, and marked atrophy in adulthood. At 34 weeks of age, medial thickness was reduced from 104.00μm, [100.30-110.50, 95% CI] in Ift88fl/fl to 89.42μm [84.00-93.49, 95% CI] in AggrecanCreERT2 ;Ift88fl/fl (p<0.0001), associated with reductions in calcified cartilage. Occasionally, atrophy was associated with complete, spontaneous, medial cartilage degradation. Following DMM, AggrecanCreERT2 ;Ift88fl/fl mice had increased OA scores. Atrophy in mature AC was not associated with obvious increases in aggrecanase-mediated destruction or chondrocyte hypertrophy. Of 44 candidate genes analysed, only Tcf7l2 correlated with Ift88 expression in micro-dissected cartilage. However, RNA scope revealed increased hedgehog (Hh) signalling (Gli1), associated with reductions in Ift88, in AggrecanCreERT2 ;Ift88fl/fl cartilage. Wheel exercise restored both AC thickness and levels of Hh signalling in AggrecanCreERT2 ;Ift88fl/fl . CONCLUSION: Our results demonstrate that IFT88 is chondroprotective, regulating AC thickness, potentially by thresholding a Hh response to physiological loading that controls cartilage calcification.

Original publication

DOI

10.1002/art.41894

Type

Journal article

Journal

Arthritis Rheumatol

Publication Date

08/06/2021