Search results
Found 9623 matches for
Hyaluronidase treatment of synovial fluid to improve assay precision for biomarker research using multiplex immunoassay platforms.
Synovial fluid (SF) is a difficult biological matrix to analyse due to its complex non-Newtonian nature. This can result in poor assay repeatability and potentially inefficient use of precious samples. This study assessed the impact of SF treatment by hyaluronidase and/or dilution on intra-assay precision using the Luminex and Meso Scale Discovery (MSD) multiplex platforms. SF was obtained from patients with knee osteoarthritis at the time of joint replacement surgery. Aliquots derived from the same sample were left untreated (neat), 2-fold diluted, 4-fold diluted or treated with 2mg/ml testicular hyaluronidase (with 2-fold dilution). Preparation methods were compared in a polysterene-bead Luminex 10-plex (N=16), magnetic-bead Luminex singleplex (N=7) and MSD 4-plex (N=7). Each method was assessed for coefficient of variation (CV) of replicate measurements, number of bead events (for Luminex assays) and dilution-adjusted analyte concentration. Percentage recovery was calculated for dilutions and HAse treatment. Hyaluronidase treatment significantly increased the number of wells with satisfactory bead events/region (95%) compared to neat (48%, p<0.001) in the polystyrene-bead Luminex assay, but the magnetic-bead Luminex assay achieved ≥50 bead events irrespective of treatment method. Hyaluronidase treatment resulted in lower intra-assay CVs for detectable ligands (group average CV<10%) than neat, 2-fold and 4-fold dilution (CV~25% for all, p<0.05) in both polystyrene- and magnetic-bead Luminex assays. In addition, measured sample concentrations were higher and recovery was poor (elevated) after hyaluronidase treatment. In the MSD 4-plex, within-group comparison of the intra-assay CV or concentration was not conclusively influenced by SF preparation. However, only hyaluronidase treatment resulted in CV<25% for all samples for TNF-α. There was no effect on analyte concentrations or recovery. Hyaluronidase treatment can improve intra-assay precision and assay signal of SF analysis by multiplex immunoassays and should be recommended for SF biomarker research, particularly using the Luminex platform.
Ankylosing spondylitis confers substantially increased risk of clinical spine fractures: a nationwide case-control study.
UNLABELLED: Ankylosing spondylitis (AS) leads to osteopenia/osteoporosis and spine rigidity. We conducted a case-control study and found that AS-affected patients have a 5-fold and 50% increased risk of clinical spine and all clinical fractures, respectively. Excess risk of both is highest in the first years and warrants an early bone health assessment after diagnosis. INTRODUCTION: Ankylosing spondylitis (AS) is related to spine rigidity and reduced bone mass, but data on its impact on fracture risk are scarce. We aimed to study the association between AS and clinical fractures using a case-control design. METHODS: From the Danish Health Registries, we identified all subjects who sustained a fracture in the year 2000 (cases) and matched up to three controls by year of birth, gender and region. Clinically diagnosed AS was identified using International Classification of Diseases, 8th revision (ICD-8; 71249), and International Classification of Diseases, 10th revision (ICD-10; M45) codes. We also studied the impact of AS duration. Conditional logistic regression was used to estimate crude and adjusted odds ratios (ORs) for non-traumatic fractures (any site, clinical spine and non-vertebral) according to AS status and time since AS diagnosis. Multivariate models were adjusted for fracture history, socio-economic status, previous medical consultations, alcoholism and use of oral glucocorticoids. RESULTS: We identified 139/124,655 (0.11%) AS fracture cases, compared to 271/373,962 (0.07%) AS controls. Unadjusted (age- and gender-matched) odds ratio (OR) were 1.54 [95% confidence interval (95%CI) 1.26-1.89] for any fracture, 5.42 [2.50-11.70] for spine and 1.39 [1.12-1.73] for non-vertebral fracture. The risk peaked in the first 2.5 years following AS diagnosis: OR 2.69 [1.84-3.92] for any fracture. CONCLUSIONS: Patients with AS have a 5-fold higher risk of clinical spine fracture and a 35% increased risk of non-vertebral fracture. This excess risk peaks early, in the first 2.5 years of AS disease. Patients should be assessed for fracture risk early after AS diagnosis.
Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy.
The bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for bone mineral and their inhibitory effects on osteoclasts. Mineral binding affinities differ among the clinically used BPs and may influence their differential distribution within bone, their biological potency, and their duration of action. The inhibitory effects of the nitrogen-containing BPs (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their inhibition of farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids used for the posttranslational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular pathways, such as preventing apoptosis in osteocytes, are emerging as other potentially important mechanisms of action. As a class, BPs share several common properties. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various individual BPs. Each BP has a unique profile that may help to explain potential important clinical differences among the BPs, in terms of speed of onset of fracture reduction, antifracture efficacy at different skeletal sites, and the degree and duration of suppression of bone turnover. As we approach the 40th anniversary of the discovery of their biological effects, there remain further opportunities for using their properties for medical purposes.
Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming.
Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)(18)-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K(528)R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.
Production of TNF-α in macrophages activated by T cells, compared with lipopolysaccharide, uses distinct IL-10-dependent regulatory mechanism.
Previously, we demonstrated that spontaneous TNF-α production by macrophages in rheumatoid arthritis (RA) synovial tissue is largely driven by contact-dependent activation with T cells in that tissue. Whereas abundant IL-10 is present in these RA synovial cultures, it does not adequately control the production of TNF-α. In this study, we have compared the mechanisms involved in IL-10-mediated TNF-α regulation in LPS-stimulated macrophages with macrophages stimulated with activated T cells. We confirm that in LPS-stimulated macrophages the 3' enhancer region of tnf is essential for tnf transcription, and its regulation by IL-10 is dominated by a STAT3-dependent pathway. However, in contrast, we have found that tnf transcription in macrophages stimulated by activated T cells or by RA synovial T cells does not require the 3' enhancer region of tnf, and that its regulation by IL-10 is subsequently altered and clearly is not mediated by a dominant STAT3 pathway. These observations have very important implications for our understanding as to how IL-10 regulates TNF-α production at sites of chronic inflammation, such as the synovial tissue of patients with RA. Furthermore, these distinct IL-10 mechanisms will have bearing upon the identification of potential therapeutic targets in RA synovial macrophages where the activation stimulus is clearly not LPS.
Role of STAT3 in glucocorticoid-induced expression of the human IL-10 gene.
In the present report we have determined the molecular mechanisms, which govern the expression of the human IL-10 gene when induced by the glucocorticoid Methyl-Prednisolone (MP). Treatment of cells with MP at 10(-6) M will readily induce IL-10 in CD19+ primary B cells and in a human B cell line. Analysis of the IL-10 promoter showed a robust 18-fold induction and demonstrated that a potential GRE motif was not required, while mutation of the -120 STAT-motif strongly reduced MP-induced trans-activation. A strong induction was also seen with a trimeric STAT-motif and over-expression of dominant-negative STAT3 could block MP induction of IL-10 mRNA. Finally, MP treatment induced binding of STAT3 to the promoter as shown by gelshift, supershift and by chromatin-immunoprecipitation. These data show that glucocorticoid-induced expression of the IL-10 gene is mediated by the transcription factor STAT3.
Rac mediates TNF-induced cytokine production via modulation of NF-kappaB.
TNF is a key factor in a variety of inflammatory diseases. Here we report that TNF induced pro-inflammatory cytokine synthesis of IL-6 and IL-8 is mediated by the Rho GTPase Rac. TNF induces p42/p44, p54 and p38 MAPK kinase; these kinases have been implicated in control of cytokine synthesis. However, over-expression of a dominant negative form of Rac strongly inhibited TNF-induced p42/44 MAPK kinase activation, but had little effect upon JNK and no effect upon p38 MAPK activity. Another key signalling pathway controlling cytokine expression is NF-kappaB. When analyzing TNF-induced NF-kappaB activity via luciferase-reporter assays or via EMSA, we were able to show that the dominant negative version of Rac could completely abrogate TNF-induced NF-kappaB activity. In addition, we also observed that inhibition of the ERK pathway led to a reduction in TNF-induced NF-kappaB transcriptional activity; this was accompanied by an ablation of TNF-induced p65 phosphorylation at serine 276. This would suggest that TNF-induced activation of Rac, lies upstream of NF-kappaB activation, and that the inhibition of this pathway results in inhibition of cytokine production.
Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes.
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures.
The advent of anti-TNF biologicals has been a seminal advance in the treatment of rheumatoid arthritis (RA) and has confirmed the important role of TNF in disease pathogenesis. However, it is unknown what sustains the chronic production of TNF. In this study, we have investigated the anti-inflammatory properties of mianserin, a serotonin receptor antagonist. We discovered mianserin was able to inhibit the endosomal TLRs 3, 7, 8, and 9 in primary human cells and inhibited the spontaneous release of TNF and IL-6 from RA synovial membrane cultures. This suggested a role for these TLRs in production of TNF and IL-6 from RA which was supported by data from chloroquine, an inhibitor of endosomal acidification (a prerequisite for TLRs 3, 7, 8, and 9 activation) which also inhibited production of these cytokines from RA synovial cultures. Only stimulation of TLR 3 or 8 induced TNF from these cultures, indicating that TLR7 and TLR9 were of less consequence in this model. The key observation that indicated the importance of TLR8 was the inhibition of spontaneous TNF production by imiquimod, which we discovered to be an inhibitor of TLR8. Together, these data suggest that TLR8 may play a role in driving TNF production in RA. Because this receptor can be inhibited by small m.w. molecules, it may prove to be an important therapeutic target.
Enhanced osteoblastogenesis in three-dimensional collagen gels.
Growth and differentiation of osteoblasts are often studied in cell cultures. In vivo, however, osteoblasts are embedded within a complex three-dimensional (3D) microenvironment, which bears little relation to standard culture flasks. Our study characterizes osteoblast-like cells cultured in 3D collagen gels and compares them with cells in two-dimensional (2D) cultures. Primary rat osteoblasts and MC3T3-E1 cells were seeded within type I collagen gels, and differentiation was determined by mineral staining and gene expression analysis. Cells growing in 3D gels showed positive mineral staining and induction of osteoblast marker genes earlier than cells growing in 2D. A number of genes, including osteocalcin, bone sialoprotein, alkaline phosphatase and dentin matrix protein 1, were already highly upregulated in 3D cultures 24 h after seeding. The early expression of osteoblast genes was dependent on the 3D structure and was not induced in cells growing on collagen-coated dishes in 2D. Comparison of thymidine incorporation between cells in 3D and 2D cultures treated with agents that induce proliferation-transforming growth factor β, platelet-derived growth factor and lactoferrin-showed a much greater response in 3D gels. Cells in 3D cultures were also much more sensitive to inhibition of proliferation by the protein kinase inhibitor imatinib mesylate. The 3D collagen gels better represent the physiological bone environment and offer a number of technical advantages for the study of osteoblasts in vitro. These studies have additional practical implications as 3D collagen gels are considered as a scaffold material in regenerative medicine for the repair of bone defects.
Cyclic AMP promotes the survival of dopaminergic neurons in vitro and protects them from the toxic effects of MPP+.
We have studied how stimulation of protein kinase C and cAMP-dependent protein kinases affect the development of mesencephalic dopaminergic neurons in vitro. IGF-I and bFGF did not activate either second messenger system nor affect the survival of dopaminergic neurons but stimulated dopamine uptake per neuron. Phorbol esters, which stimulate protein kinase C, had no effect on dopamine uptake. Dibutyryl-cAMP caused an increase in dopamine uptake, which was blocked with (Rp)-cAMPS, a specific inhibitor of cAMP-dependent protein kinases. Treating cells with specific phosphodiesterase type IV inhibitors elevated the forskolin-induced increase in dopamine uptake. Furthermore, cAMP, but neither bFGF nor activation dependent astrocyte factor (ADAF), was able to prevent the degeneration of dopaminergic neurons induced by MPP+. These results suggest that increased intracellular cAMP protects dopaminergic neurons in situations of stress and therefore reveal novel possibilities for the treatment of Parkinson's disease.
The osteocyte--a novel endocrine regulator of body phosphate homeostasis.
Although osteocytes are the most abundant cell type in bone, much of their biology remains enigmatic. They are known to transduce mechanical stress into signals that initiate local bone remodeling, and are targets for systemic and local endocrine signals that affect bone architecture and mineral homeostasis. However, recent data reveal that osteocytes themselves act as endocrine cells that synthesize fibroblast growth factor 23 (FGF23) and several other phosphatonins, shown to underpin the systemic regulation of phosphate homeostasis. This review will synthesize the emerging discoveries concerning the osteocytic endocrine role in phosphate homeostasis through the biology and pathophysiology of these phosphatonins. We also suggest future research paths that might resolve existing uncertainties, and look ahead at how greater understanding might improve the management of clinical disorders of phosphate homeostasis.
Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation.
Steroid-induced osteoporosis is a common side effect of long-term treatment with glucocorticoid (GC) drugs. GCs have multiple systemic effects that may influence bone metabolism but also directly affect osteoblasts by decreasing proliferation. This may be beneficial at low concentrations, enhancing differentiation. However, high-dose treatment produces a severe deficit in the proliferative osteoblastic compartment. We provide causal evidence that this effect of GC is mediated by induction of the dual-specificity MAPK phosphatase, MKP-1/DUSP1. Excessive MKP-1 production is both necessary and sufficient to account for the impaired osteoblastic response to mitogens. Overexpression of MKP-1 after either GC treatment or transfection ablates the mitogenic response in osteoblasts. Knockdown of MKP-1 using either immunodepletion of MKP-1 before in vitro dephosphorylation assay or short interference RNA transfection prevents inactivation of ERK by GCs. Neither c-jun N-terminal kinase nor p38 MAPK is activated by the mitogenic cocktail in 20% fetal calf serum, but their activation by a DNA-damaging agent (UV irradiation) was inhibited by either GC treatment or overexpression of MKP-1, indicating regulation of all three MAPKs by MKP-1 in osteoblasts. However, an inhibitor of the MAPK/ERK kinase-ERK pathway inhibited osteoblast proliferation whereas inhibitors of c-jun N-terminal kinase or p38 MAPK had no effect, suggesting that ERK is the MAPK that controls osteoblast proliferation. Regulation of ERK by MKP-1 provides a novel mechanism for control of osteoblast proliferation by GCs.
Selective targeting of death receptor 5 circumvents resistance of MG-63 osteosarcoma cells to TRAIL-induced apoptosis.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a tumor necrosis factor superfamily member, targets death receptors and selectively kills malignant cells while leaving normal cells unaffected. However, unlike most cancers, many osteosarcomas are resistant to TRAIL. To investigate this resistance, we characterized the response of MG-63 osteosarcoma cells and hPOB-tert osteoblast-like cells to TRAIL and agonist antibodies to death receptor 4 (DR4) and death receptor 5 (DR5). We found that MG-63 osteosarcoma cells and hPOB-tert osteoblast-like cells show no or very little response to TRAIL or a DR4 agonist, but MG-63 cells undergo apoptosis in response to a DR5 agonist. Analysis of TRAIL receptor expression showed that normal osteoblastic and osteosarcoma cells express a variety of TRAIL receptors but this does not correlate to TRAIL responsiveness. Production of the soluble decoy receptor osteoprotegerin also could not explain TRAIL resistance. We show that TRAIL activates the canonical caspase-dependent pathway, whereas treatment with cycloheximide increases the sensitivity of MG-63 cells to TRAIL and anti-DR5 and can also sensitize hPOB-tert cells to both agents. Proapoptotic and antiapoptotic protein expression does not significantly differ between MG-63 and hPOB-tert cells or change following treatment with TRAIL or anti-DR5. However, sequencing the death domain of DR4 in several osteoblast-like cells showed that MG-63 osteosarcoma cells are heterozygous for a dominant-negative mutation, which can confer TRAIL resistance. These results suggest that although the dominant-negative form of the receptor may block TRAIL-induced death, an agonist antibody to the active death receptor can override cellular defenses and thus provide a tailored approach to treat resistant osteosarcomas.
Vanadate prevents glucocorticoid-induced apoptosis of osteoblasts in vitro and osteocytes in vivo.
Skeletal mass is maintained by a balance between formation and resorption, cell proliferation and apoptosis. In vitro, glucocorticoids (GCs) decrease extracellular signal-regulated kinases (ERK) activation by mitogens, thus inhibiting osteoblast proliferation. Both ERK activity and proliferation are restored by co-treatment with the protein tyrosine phosphatase inhibitor, vanadate. Since ERK signalling may also be anti-apoptotic, we explored the effects of vanadate on GC-induced apoptosis in vitro and in vivo. Apoptosis in MBA-15.4 pre-osteoblasts increased from 6 h and remained up to eightfold higher through 6 days of 10(- 6) M dexamethasone (Dex) treatment. Co-incubation with 10(- 7) M vanadate markedly reduced apoptosis at all time points. Vanadate also prevented GC-induced poly-ADP-ribose polymerase cleavage. We assessed the transcriptional profiles of seven anti-apoptotic proteins (Bcl-2, Bcl-X(L), inhibitors of apoptosis protein-1 (IAP-1), IAP-2, X-linked IAP (XIAP), Fas-associated death-domain-like IL-1beta-converting enzyme-inhibitory protein (FLIP(Long)) and FLIP(Short)) in osteoblasts subjected to various stimuli using real-time quantitative PCR. Although these anti-apoptotic genes responded to different mitogenic conditions, Dex failed to repress their expression, and in fact significantly up-regulated Bcl-X(L), IAP-2 and XIAP. Dex may therefore induce apoptosis by up-regulating pro-apoptotic gene expression. We have previously demonstrated that rats treated with GC develop low formation osteoporosis (bone histomorphometry and DEXA) and skeletal fragility (breaking strength) that were largely prevented by co-treatment with vanadate. We report here that vertebrae from rats treated with 3.5 mg/kg per day methylprednisolone for 9 weeks showed increased incidence of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labelling-positive apoptotic osteocytes, which was reduced by vanadate co-treatment. We conclude that vanadate prevents GC-induced apoptosis of pre-osteoblasts in vitro and osteocytes in vivo, and this may contribute to its bone-sparing effects in vivo.