Search results
Found 9633 matches for
Penicillin in the treatment of skin sores in children.
Skin infections are a common cause of morbidity in children, particularly in tropical areas. Cultures from such lesions often grow both penicillin-resistant staphylococci and penicillin-sensitive streptococci. In a controlled trial of the treatment of septic skin lesions in 227 paediatric outpatients at Goroka Hospital, sequential analysis of the response to treatment showed that washing plus the intramuscular administration of procaine penicillin was more effective than washing plus placebo (P less than 0.05) after the 25th preference had been decided. When the amount of healing in the two groups was compared, washing plus penicillin was again more effective than washing plus placebo (P less than 0.001; Wilcoxon's rank-sum test). Because it eradicates beta-haemolytic streptococci, penicillin is a safe and effective agent for the treatment of large, multiple, or badly infected skin sores, even in countries such as Australia and Papua New Guinea in which most staphylococci are resistant to penicillin.
HLA-B27 and disease pathogenesis: new structural and functional insights.
The human leukocyte antigen class I allele HLA-B27 is a major histocompatibility complex (MHC) antigen that is strongly associated with the spondyloarthritic group of human rheumatic diseases, the most common of which is ankylosing spondylitis. Although the mechanism underlying this disease association remains unknown, numerous theories have been proposed. Much more is known of the natural role of HLA-B27 in binding and presenting antigenic peptides to T cells. The 'arthritogenic peptide hypothesis' suggests that the role of HLA-B27 in disease relates to its specificity for binding certain peptides. Recently, it has also been shown that HLA-B27 has an unusual cell biology and can adopt a novel homodimeric structure. In this review, a molecular model of the HLA-B27 homodimer is presented and the possible pathogenic significance of such a structure is discussed.
CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses.
Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.
An ankylosing spondylitis-associated genetic variant in the IL23R-IL12RB2 intergenic region modulates enhancer activity and is associated with increased Th1-cell differentiation.
OBJECTIVES: To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region. METHODS: We performed conditional analysis on genetic association data and used epigenetic data on chromatin remodelling and transcription factor (TF) binding to identify the primary AS-associated IL23R-IL12RB2 intergenic SNP. Functional effects were tested in luciferase reporter assays in HEK293T cells and allele-specific TF binding was investigated by electrophoretic mobility gel shift assays. IL23R and IL12RB2 mRNA levels in CD4+ T cells were compared between cases homozygous for the AS-risk 'A' allele and the protective 'G' allele. The proportions of interleukin (IL)-17A+ and interferon (IFN)-γ+ CD4+ T-cells were measured by fluorescence-activated cell sorting and compared between these AS-risk and protective genotypes. RESULTS: Conditional analysis identified rs11209032 as the probable causal SNP within a 1.14 kb putative enhancer between IL23R and IL12RB2. Reduced luciferase activity was seen for the risk allele (p<0.001) and reduced H3K4me1 methylation observed in CD4+ T-cells from 'A/A' homozygotes (p=0.02). The binding of nuclear extract to the risk allele was decreased ∼3.5-fold compared with the protective allele (p<0.001). The proportion of IFN-γ+ CD4+ T-cells was increased in 'A/A' homozygotes (p=0.004), but neither IL23R nor IL12RB2 mRNA was affected. CONCLUSIONS: The rs11209032 SNP downstream of IL23R forms part of an enhancer, allelic variation of which may influence Th1-cell numbers. Homozygosity for the risk 'A' allele is associated with more IFN-γ-secreting (Th1) cells. Further work is necessary to explain the mechanisms for these important observations.
KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis.
The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical β2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (SpA), is also a ligand for KIR3DL2. In this study, we show that B27(2) and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B27(2) tetramers bound KIR3DL2-transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric, and monomeric FHC from HLA-B27-expressing cell lines. Binding to B27(2) and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B27(2) and B27 FHC stimulated KIR3DL2CD3ε-transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFN-γ secretion and promoted greater survival of KIR3DL2(+) CD4 T and NK cells than binding to other HLA-class I. KIR3DL2(+) T cells from B27(+) SpA patients proliferated more in response to Ag presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27(+) SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC.
Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties.
CD8(+) T lymphocytes play a key role in host defense, in particular against important persistent viruses, although the critical functional properties of such cells in tissue are not fully defined. We have previously observed that CD8(+) T cells specific for tissue-localized viruses such as hepatitis C virus express high levels of the C-type lectin CD161. To explore the significance of this, we examined CD8(+)CD161(+) T cells in healthy donors and those with hepatitis C virus and defined a population of CD8(+) T cells with distinct homing and functional properties. These cells express high levels of CD161 and a pattern of molecules consistent with type 17 differentiation, including cytokines (e.g., IL-17, IL-22), transcription factors (e.g., retinoic acid-related orphan receptor gamma-t, P = 6 x 10(-9); RUNX2, P = 0.004), cytokine receptors (e.g., IL-23R, P = 2 x 10(-7); IL-18 receptor, P = 4 x 10(-6)), and chemokine receptors (e.g., CCR6, P = 3 x 10(-8); CXCR6, P = 3 x 10(-7); CCR2, P = 4 x 10(-7)). CD161(+)CD8(+) T cells were markedly enriched in tissue samples and coexpressed IL-17 with high levels of IFN-gamma and/or IL-22. The levels of polyfunctional cells in tissue was most marked in those with mild disease (P = 0.0006). These data define a T cell lineage that is present already in cord blood and represents as many as one in six circulating CD8(+) T cells in normal humans and a substantial fraction of tissue-infiltrating CD8(+) T cells in chronic inflammation. Such cells play a role in the pathogenesis of chronic hepatitis and arthritis and potentially in other infectious and inflammatory diseases of man.
A method for producing monoclonal antibodies to human T-cell-receptor beta-chain variable regions.
Study of the T-cell repertoire in humans has been hampered by the lack of monoclonal antibodies (mAbs) to the T-cell receptor (TCR) variable region (V) gene products. We describe a method for producing mAbs to the human TCR beta-chain V (V beta) gene products in which mice were immunized with a rat basophil cell line (RBL-2H3) transfected with the extracellular domain of the TCR heterodimer fused to the lambda chain of CD3. These cells acted as excellent immunogens for raising anti-TCR mAb and also formed the basis of a rapid screening assay. We generated mAbs against V beta protein of the TCR, showed that these mAbs stained approximately 1% of peripheral blood T cells, and further showed that the mAbs could stimulate proliferation of these T cells. We then characterized the mAbs by amplifying TCR cDNA derived from mAb-stimulated cells and sequencing the beta chain. All clones sequenced used the V beta 7.1 chain, proving conclusively that the mAbs generated were specific for V beta 7.1 subfamily. This method generates mAbs to human TCR V beta proteins efficiently and might allow production of a complete panel of mAbs directed against human TCR V beta proteins.
Identification of HLA-B27-restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases.
The association of HLA-B27 with ankylosing spondylitis and reactive arthritis is the strongest one known between an MHC class I Ag and a disease. We have searched the proteome of the bacterium Chlamydia trachomatis for HLA-B27 binding peptides that are stimulatory for CD8(+) cells both in a model of HLA-B27 transgenic mice and in patients. This was done by combining two biomathematical computer programs, the first of which predicts HLA-B27 peptide binding epitopes, and the second the probability of HLA-B27 peptide generation by the proteasome system. After preselection, immunodominant peptides were identified by Ag-specific flow cytometry. Using this approach we have identified for the first time nine peptides derived from different C. trachomatis proteins that are stimulatory for CD8(+) T cells. Eight of these nine murine-derived peptides were recognized by cytotoxic T cells. The same strategy was used to identify B27-restricted chlamydial peptides in three patients with reactive arthritis. Eleven peptides were found to be stimulatory for patient-derived CD8(+) T cells, of which eight overlapped those found in mice. Additionally, we applied the tetramer technology, showing that a B27/chlamydial peptide containing one of the chlamydial peptides stained CD8(+) T cells in patients with Chlamydia-induced arthritis. This comprehensive approach offers the possibility of clarifying the pathogenesis of B27-associated diseases.
HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I.
Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with β(2)-microglobulin (β2m) and peptide and (β2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 μM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 μM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 μM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.
Parvovirus 4 infection and clinical outcome in high-risk populations.
Parvovirus 4 (PARV4) is a DNA virus frequently associated with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections, but its clinical significance is unknown. We studied the prevalence of PARV4 antibodies in 2 cohorts of HIV- and HCV-infected individuals (n = 469) and the correlations with disease status. We found that PARV4 infection frequently occurred in individuals exposed to bloodborne viruses (95% in HCV-HIV coinfected intravenous drug users [IDUs]). There were no correlations between PARV4 serostatus and HCV outcomes. There was, however, a significant association with early HIV-related symptoms, although because this was tightly linked to both HCV status and clinical group (IDU), the specific role of PARV4 is not yet clear.
High frequency, sustained T cell responses to PARV4 suggest viral persistence in vivo.
BACKGROUND: Parvovirus 4 (PARV4) is a recently identified human virus that has been found in livers of patients infected with hepatitis C virus (HCV) and in bone marrow of individuals infected with human immunodeficiency virus (HIV). T cells are important in controlling viruses but may also contribute to disease pathogenesis. The interaction of PARV4 with the cellular immune system has not been described. Consequently, we investigated whether T cell responses to PARV4 could be detected in individuals exposed to blood-borne viruses. METHODS: Interferon γ (IFN-γ) enzyme-linked immunospot assay, intracellular cytokine staining, and a tetrameric HLA-A*0201-peptide complex were used to define the lymphocyte populations responding to PARV4 NS peptides in 88 HCV-positive and 13 HIV-positive individuals. Antibody responses were tested using a recently developed PARV4 enzyme-linked immunosorbent assay. RESULTS: High-frequency T cell responses against multiple PARV4 NS peptides and antibodies were observed in 26% of individuals. Typical responses to the NS pools were >1000 spot-forming units per million peripheral blood mononuclear cells. CONCLUSIONS: PARV4 infection is common in individuals exposed to blood-borne viruses and elicits strong T cell responses, a feature typically associated with persistent, contained infections such as cytomegalovirus. Persistence of PARV4 viral antigen in tissue in HCV-positive and HIV-positive individuals and/or the associated activated antiviral T cell response may contribute to disease pathogenesis.
Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis.
CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previously shown that B27 can form H chain dimers (termed B27(2)), which, unlike classical HLA-B27, bind the killer-cell Ig-like receptor KIR3DL2. In this article, we show that B27(2)-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2(+) CD4 T cells. KIR3DL2(+) CD4 T cells are expanded and enriched for IL-17 production in the blood and synovial fluid of patients with SpA. Despite KIR3DL2(+) cells comprising a mean of just 15% of CD4 T in the peripheral blood of SpA patients, this subset accounted for 70% of the observed increase in Th17 numbers in SpA patients compared with control subjects. TCR-stimulated peripheral blood KIR3DL2(+) CD4 T cell lines from SpA patients secreted 4-fold more IL-17 than KIR3DL2(+) lines from controls or KIR3DL2(-) CD4 T cells. Strikingly, KIR3DL2(+) CD4 T cells account for the majority of peripheral blood CD4 T cell IL-23R expression and produce more IL-17 in the presence of IL-23. Our findings link HLA-B27 with IL-17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.
The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression.
OBJECTIVES: To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). METHODS: We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. RESULTS: The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10(-14)) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 'G' allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk 'A' allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). CONCLUSION: We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS.
The solvent-inaccessible Cys67 residue of HLA-B27 contributes to T cell recognition of HLA-B27/peptide complexes.
Crystallographic studies have suggested that the cysteine at position 67 (Cys(67)) in the B pocket of the MHC molecule HLA-B*2705 is of importance for peptide binding, and biophysical studies have documented altered thermodynamic stability of the molecule when Cys(67) was mutated to serine (Ser(67)). In this study, we used HLA-B27.Cys(67) and HLA-B27.Ser(67) tetramers with defined T cell epitopes to determine the contribution of this polymorphic, solvent-inaccessible MHC residue to T cell recognition. We generated these HLA-B27 tetramers using immunodominant viral peptides with high binding affinity to HLA-B27 and cartilage-derived peptides with lower affinity. We demonstrate that the yield of refolding of HLA-B27.Ser(67) molecules was higher than for HLA-B27.Cys(67) molecules and strongly dependent on the affinity of the peptide. T cell recognition did not differ between HLA-B27.Cys(67) and HLA.B27.Ser(67) tetramers for the viral peptides that were investigated. However, an aggrecan peptide-specific T cell line derived from an HLA-B27 transgenic BALB/c mouse bound significantly stronger to the HLA-B27.Cys(67) tetramer than to the HLA-B27.Ser(67) tetramer. Modeling studies of the molecular structure suggest the loss of a SH ... pi hydrogen bond with the Cys-->Ser substitution in the HLA-B27 H chain which reduces the stability of the HLA-B27/peptide complex. These results demonstrate that a solvent-inaccessible residue in the B pocket of HLA-B27 can affect TCR binding in a peptide-dependent fashion.
Clostridium perfringens enterotoxin is a superantigen reactive with human T cell receptors V beta 6.9 and V beta 22.
Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked.