Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The human gut microbiome plays a key role in human health 1 , but 16S characterization lacks quantitative functional annotation 2 . The fecal metabolome provides a functional readout of microbial activity and can be used as an intermediate phenotype mediating host-microbiome interactions 3 . In this comprehensive description of the fecal metabolome, examining 1,116 metabolites from 786 individuals from a population-based twin study (TwinsUK), the fecal metabolome was found to be only modestly influenced by host genetics (heritability (H2) = 17.9%). One replicated locus at the NAT2 gene was associated with fecal metabolic traits. The fecal metabolome largely reflects gut microbial composition, explaining on average 67.7% (±18.8%) of its variance. It is strongly associated with visceral-fat mass, thereby illustrating potential mechanisms underlying the well-established microbial influence on abdominal obesity. Fecal metabolic profiling thus is a novel tool to explore links among microbiome composition, host phenotypes, and heritable complex traits.

Original publication




Journal article


Nat Genet

Publication Date





790 - 795


Aged, Arylamine N-Acetyltransferase, Feces, Female, Gastrointestinal Microbiome, Gastrointestinal Tract, Humans, Male, Metabolome, Obesity, RNA, Ribosomal, 16S