Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by neutrophil articular infiltration, joint pain and the progressive destruction of cartilage and bone. IL-22 is a key effector molecule that plays a critical role in autoimmune diseases. However, the function of IL-22 in the pathogenesis of RA remains controversial. In this study, we investigated the role of IL-22 in the early phase of antigen-induced arthritis (AIA) in mice. METHODS: AIA was induced in C57BL/6, IL-22(-/-), ASC(-/-) and IL-1R1(-/-) immunized mice challenged intra-articularly with methylated bovine serum albumin (mBSA). Expression of IL-22 in synovial membranes was determined by RT-PCR. Articular hypernociception was evaluated using an electronic von Frey. Neutrophil recruitment and histopathological analyses were assessed in inflamed knee joint. Joint levels of inflammatory mediators and mBSA-specific IgG concentration in the serum were measured by ELISA. RESULTS: The IL-22 mRNA expression and protein levels in synovial tissue were increased during the onset of AIA. In addition, pharmacological inhibition (anti-IL-22 antibody) and genetic deficiency (IL-22(-/-) mice) reduced articular pain and neutrophil migration in arthritic mice. Consistent with these findings, recombinant IL-22 joint administration promoted articular inflammation per se in WT mice, restoring joint nociception and neutrophil infiltration in IL-22(-/-) mice. Moreover, IL-22-deficient mice showed reduced synovitis (inflammatory cell influx) and lower joint IL-1β levels, whereas the production of IL-17, MCP-1/CCL2, and KC/CXCL1 and the humoral immune response were similar, compared with WT mice. Corroborating these results, the exogenous administration of IL-22 into the joints induced IL-1β production in WT mice and reestablished IL-1β production in IL-22(-/-) mice challenged with mBSA. Additionally, IL-1R1(-/-) mice showed attenuated inflammatory features induced by mBSA or IL-22 challenge. Articular nociception and neutrophil migration induced by IL-22 were also reduced in ASC(-/-) mice. CONCLUSIONS: These results suggest that IL-22 plays a pro-inflammatory/pathogenic role in the onset of AIA through an ASC-dependent stimulation of IL-1β production.

Original publication

DOI

10.1186/s13075-015-0759-2

Type

Journal article

Journal

Arthritis Res Ther

Publication Date

02/09/2015

Volume

17

Keywords

Animals, Antigens, Apoptosis Regulatory Proteins, Arthralgia, Arthritis, Experimental, Cell Movement, Enzyme-Linked Immunosorbent Assay, Gene Expression, Interleukin-1beta, Interleukins, Knee Joint, Mice, Inbred C57BL, Mice, Knockout, Neutrophils, Reverse Transcriptase Polymerase Chain Reaction, Synovial Membrane, Synovitis, Zymosan