
 1 

Section 1. Overview of the Development Methodology 
 

To ensure a principled and transparent design process we employ the CoSMoS 

(Complex System Modelling and Simulation) process, a framework to guide the 

modelling and analysis of complex systems (Figure 1) 1,2. Initial stages of model 

design involve the development of a domain model, a non-executable, conceptual 

model focusing purely on current biological understanding, disregarding any 

consideration of how to implement and simulate the conceptual model. The domain 

model specifies the states, relationships and methods of interaction (the rule-set) for 

the biological entities being captured. The platform model is akin to a software 

specification, as is standard in software engineering, and details how the biological 

processes specified in the domain model are to be implemented. The simulation 

platform is an executable piece of software, which implements the underlying 

conceptual model. The results model provides a structure to interpret data obtained 

from the Simulation Platform. A specification is created that documents the output 

obtained from the simulation, what domain knowledge this is compared to, and the 

statistical methods used to assess this result.  
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Figure 1. Overview of the CoSMoS process. In this approach the biological system of interest is 
referred to as the domain. Initial design phases lead to the development of a domain model, a non-
executable specification focusing on current understanding with respect to the research context. The 
platform model represents a software blueprint while the simulation platform is an executable piece of 
software that implements the conceptual model. The results model summarizes the understanding 
generated from experimentation conducted using the simulator 1 
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Section 2. Domain Model Development 
 
 

In this section we detail the Domain Model. The research context of the simulator is 

summarised using an expected behaviours diagram. This diagram specifies the 

research question and the observed emergent properties of the system, as well as the 

biological entities and mechanisms hypothesised to give rise to these properties. This 

approach helps to scope the research context, highlighting key model entities and time 

points of interest.  

Following this step low level behaviors are modelled using an adaptation of the 

Unified Modelling Language (UML) 3. The Unified Modelling Language (UML) is a 

general-purpose visual notation used to model the design of a system and is 

commonly used in software engineering. Specifically, we use two key diagrams: (i) A 

State Machine Diagram where for each model entity, states (a set of attributes and 

behaviours associated with a model entity at a specific moment in time) that the entity 

can exist in and the interactions that much take place for the state to change are 

examined and documented (Figure 2). (ii) An Activity Diagram where we specify a 

sequence of activities associated with model entities. For each entity, it details the 

workflow from an initial state to a finish point, detailing the decision paths and 

interactions with other entities that occur (Figure 3). 

To argue that the simulator fulfils appropriately addresses the research context, 

acceptance tests, key design decisions, and information used to inform the design, 

development and validation of the model and simulation are presented as arguments 

over evidence using a visual notation derived from goal structuring notation (GSN) 

and can be opened using the GSN visualisation tool ARTOO 4.  
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Figure 2. Key for Adapted Unified Modelling Language: State Machine. This is a key for the 
syntax used to describe biological processes as state machine diagrams in both the domain and platform 
models. Rectangles represent actions and agent states; diamonds represent decisions; arrows represent 
the order in which state transitions/activities may occur while a circle represents entry/exit into the 
system. 
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Figure 3. Key for Adapted Unified Modelling Language: Activity Diagram. This describes the 
syntax used to describe biological processes as activity diagrams in both the domain and platform 
models. Rectangles represent actions or activities; diamonds represent decisions; horizontal 
bars represent the start (split) or end (join) of concurrent activities; a black circle represents the start 
(initial state) of the workflow while an encircled black circle represents the end of the activity (final 
state). 
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2.1 Overview of the Biological System 
 
Following immunization and infection, complement activation and deposition onto 

microbial antigens contributes to their efficient transport to the LN in a soluble form 

or through active transport by Dendritic Cells (DCs). Within the lymph node, antigen 

smaller than 70 kDa with a molecular radius less than ~4 nm filters into the 

parenchyma through reticular conduits or small pores in the subcapsular sinus 5. The 

conduit system is guarded by PLVAP, a protein that forms a molecular sieve designed 

to regulate the parenchymal entry of lymphocytes and soluble antigens 6. However, 

not all lymph-borne molecules have free access to the lymphocyte compartment; 

larger antigen is retained at the subcapsular sinus, where macrophages and DCs 

sample the lymph and remove microorganisms, larger molecules and debris 7.  

Within the B-zone a dense web-like network of non-haematopoietic stromal cells are 

found. This network comprises 3 distinct but interconnected CXCL13+ cell types: 

Marginal Reticular Cells (MRCs), B-zone Reticular Cells (BRCs) and Follicular 

Dendritic Cells (FDCs). FDCs not only express CXCL13 but also act as an important 

reservoir for trapped antigen that can stimulate naïve B cells 8.  

 

Concurrently, B cells migrate across the endothelium into the cortex through the HEV 

at a rate dependent on the local vasculature. The arrest of blood-borne B cells in 

HEVs requires binding of the chemokine receptors CXCR4, CCR7 and to a minor 

extent CXCR5, leading to activation of the adhesion molecule LFA-1 that binds to 

ICAM-1 and ICAM-2 9. Once inside the lymph node, access to the follicle requires 

the G-protein-coupled receptor (GPCR) CXCR5 and is promoted by ICAM-1-

expressing fibroblastic reticular cells (FRC) of the T-cell area which act as guidance 

structures 9.  

 

As B cells scan the follicle they respond to ligands for the receptors CXCR5 and 

EBI2; this promotes contact with FDCs and cells located around the follicle 

perimeter, including sinus associated macrophages, MRCs and DCs 10–13. Non-

cognate interactions with antigen via complement receptors CR1 and CR2 facilitate 

the mass transport of opsonized antigens from the exposed follicle perimeter to the 

protected centre for long-term display on FDCs, where they are trapped in the form of 



 7 

iccosomes by complement receptors present on the dense network of FDC processes 
8. 

 

If lymphocytes fail to recognize cognate antigen within a few hours to days, they 

return to the circulation in a sphingosine-1 phosphate receptor 1 (S1PR1) dependent 

manner through efferent lymph vessels and the thoracic duct 14,15. Notably, naïve B 

cells are resident in the LN longer than either CD4+ or CD8+ T cells 16. However, if a 

B-cell does meet its cognate antigen it can internalise the antigen through its B-cell 

receptor. It can then degrade pathogen proteins into peptides for display on Major 

Histocompatibility Complex Class II (MHC-II) molecules on the B-cell surface. 

Following antigen priming, a B cell upregulates CD86 and CD80, proteins that 

provide co-stimulatory signals for T-cell activation while upregulation of the 

lymphocyte activation antigen CD69 inhibits the egress activity of S1PR1, leading to 

retention in the lymph node 12. To maximise encounters with T cells, antigen-primed 

B cells exhibit a reduction in migration velocity, upregulate CCR7, (while CXCR5 

expression remains unchanged) distribute themselves along the B/T border as a result 

of the balanced chemoattraction of CCL19/CCL21, CXCL13 and 7α,25 

hydroxycholesterol 12. 

 

Helper T cells, primed by dendritic cells earlier in the infection, migrate around the T-

zone in a CCR7 dependent manner. A subset of activated CD4+ T cells upregulate 

CXCR5 and reduce CCR7 expression allowing them to migrate towards the edges of 

follicles to provide help to B cells. This activation occurs via CD40 ligation 

subsequently driving the resting B-cell into the cell-cycle and upregulating the 

transcription factor bcl6, therefore reducing the propensity to undergo apoptosis 17. 

Activated B cells migrate to interfollicular and outer follicle regions after receiving T 

cell help, where they can undergo proliferation for 1-2 days before returning to the 

centre of the follicle in an S1PR2 dependent process to initiate GC clustering and 

acquire a GC phenotype associated with, amongst other molecules, the upregulation 

of the chemokine receptor CXCR4 and the glycan moiety GL7 18,19. If BCs fail to 

acquire this TC help they revert back to a naïve phenotype, downregulating CCR7 and 

CD86 20.  
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2.2 Characterising Current Understanding Through Visual Notations 
 

The aim of this Domain Model is to summarise current understanding of the pathway 

with respect to the following question: How does CXCL13 regulate the positioning of 

cognate B cells within primary lymph node follicles? We define the research context 

using an expected behaviours diagram (Figure 4), and detail the behaviours of model 

entities using state-machine and activity diagrams (Figures 5-9) 3.  
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Figure 4. Expected Behaviours Diagram for CXCL13Sim. In this diagram we present the research 
context within which the model is developed. This diagram specifies the key emergent properties of the 
system as well as the low level mechanisms reported to give rise to these properties. Lastly, it defines 
key entities in the model and the relationships between them.  
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Figure 5. State Machine Diagram for a B cell: A B cell enters the LN at a fixed rate dependent on 
vascular supply, once in the LN a cognate B cell can become MHC expressing if it encounters antigen. 
Each B cell dynamically expresses CXCR5 and EBI2R and through detection of chemokine gradients 
can decide to move chemotactically or randomly if there is sufficient space to move. B-cells continue 
to express LTα1β2 at a fixed level and if 12-24 hours have passed and no interactions have occurred, 
the B cell exits the LN. If however, a BC encounters antigen it becomes antigen-primed, upregulating 
pMHC-II and CCR7 to facilitate interactions with T cells.  
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Figure 6. State Machine Diagram for a FDC:  FDCs are resident in the system and are antigen 
presenting at time zero. FDCs secrete chemokine and express LTβR, complement receptors and 
adhesion molecules at a rate dependent on maturation status. FDCs also retain and present antigen 
unless cognate B cells capture all antigen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FDC | Domain Model | State Machine

/ at rate dependent 
on maturation status

/ resident in follicle

[antigen expressed
 via CR1/CR2]

[no antigen left 
to express]

CXCL13 SECRETING

UNBOUND

IMMUNE-COMPLEX 
BOUND

/ at a fixed rate
LTβR EXPRESSING

IMMATURE MATURE
[receives LTβR or TLR stimulation]

/upregulation of complement, 
adhesion factors and CXCL13

CR1/CR2 EXPRESSING ADHESION MOLECULE 
EXPRESSING/ at rate dependent 

on maturation status
/ at rate dependent 
on maturation status



 12 

 
 
 

 
 

 
 

Figure 7. State machine diagrams for antigen and RCs: Antigen enters the follicle 1-6 hours 
following immunisation. It enters in a soluble or SCS residing form but may be transferred to FDCs if 
part of an immune complex. RCs are resident in the follicle at time zero and secrete CXCL13 at a fixed 
rate. SCS macrophages are in the system at time zero and can present antigen. 
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Figure 8. Activity Diagram 1: These diagrams detail the activities performed by each model entity 
and the conditions required for a change of activity to occur.  At the beginning of the activity FDCs 
exist in an immature state but mature if sufficient LTβR signal is received. CXCL13 is secreted at a rate 
dependent on maturation status. Antigen enters the system via the conduits or may be presented by SCS 
macrophages if greater than 70kDa. If antigen is part of an immune complex it may become FDC 
bound. RCs secrete CXCL13 at a fixed rate.  
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Figure 9. Activity Diagram 2: Activity diagrams detail the activities performed by each model entity 
and the conditions required for a change of activity to occur.  At the beginning of the activity FDCs 
express antigen unless cognate B cells capture all antigen. Under homeostatic conditions FDCs secrete 
CXCL13 at a fixed rate. If a B cell expresses CXCR5 then it can orientate itself along a CXCL13 
gradient, otherwise it randomly orientates itself and if there is free space available can migrate. Once 
proximal to an FDC/SCS macrophage a cognate B cell may interact with antigen via its B-cell receptor 
and express it via MHC-II. 
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Section 3. Platform Model 
 
 

The Domain Model detailed in Section 2 describes a set of biological processes 

occurring on molecular, cellular and tissue levels of organization. To provide a fit for 

purpose representation of the domain model while also promoting model parsimony 

and efficiency we hybridise different modelling techniques into a multiscale platform, 

with a modular architecture to facilitate model development and validation. The 

design of this system is provided in the following section.  

 

3.1 Overview of the Platform Model 
 

An overview of the scheme (Figure 10) is as follows: In silico stromal cells (Module 

1) are modelled as a series of nodes and edges 21 capable of interacting with 

lymphocytes and secreting CXCL13 (Module 2). CXCL13 diffusion is modelled 

using a discretized partial differential equation (PDE) 22. Individual lymphocytes are 

distinct entities displaying heterogeneity in receptor expression and activation status; 

as such we have modelled them as agents that adjust their behaviours with respect to 

vector and ordinary differential equation-based calculations (Module 3). This was 

achieved through adaptation of a published scheme which explicitly accounts for 

gradient detection and the dynamics of G-protein coupled receptor (GPCR) 

expression on the cell surface 23,24.  Within this system agents exist within a 

continuous environment with chemokine existing in discrete grid spaces. An analysis 

of an agent-based model (ABM) of the number of effector T cells leaving the LN 

suggests that a 3D model is required to adequately capture the dynamics of T-cell 

output from the lymph node during infection. 2D models were shown to 

underestimate lymph node output because the distance between antigen-presenting 

cells is overestimated in 2D with respect to 3D 25. As such 3D was deemed most 

appropriate to model the efficacy of B cell scanning. 
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Figure 10. Hybrid 3D multiscale representation of a follicle. In this system stromal cells are 
modelled as a graph (Module 1), chemokine diffusion is modelled as a discretised partial differential 
equation (Module 2), while B cells are modelled as rich agents which can interact with their local 
environment through a set of coupled differential equations and vector based calculations (Module 3). 
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3.2. Module 1: Stroma 
 

In silico stromal networks are generated using an adaptation of the algorithm 

developed by Kislitsyn et al. (2015). The algorithm stochastically builds a network 

from an initial node, picking the nearest non-expanded node and generates a set of 

vectors that will eventually become edges to new nodes. Each vector has a direction 

and length randomly chosen, but conforming to values derived from experimental 

data, and the directions are chosen such that the sum of all the vectors in the set is 

approximately zero. A new node is then created at the end of each vector, and an edge 

connects them. This process is repeated to generate a graph.  

 

However, this algorithm has some limitations in that it can only describe one stromal 

subset. To ensure an accurate reconstruction we consider the morphology of different 

stromal subsets, follicular dendritic cells and reticular cells. In addition, our datasets 

also show that a number of cell protrusions directly connect to one another, a property 

which can affect network topology. To account for this, branches between edges are 

added by creating a vector connecting the midpoints of each edge, subject to subtype-

specific constraints on the maximum edge length and the local density such that the 

degree centrality matches our in vivo datasets. This approach is used to generate both 

RC and FDC networks within the follicle while RCs located just below the 

subcapsular sinus are stochastically seeded by random sampling of X and Y values 

subject to density constraints to ensure consistency between in vivo and in silico edge 

lengths and degree centralities. To represent the heterogeneity of network structures 

observed in vivo and to ensure no biases were introduced through a specific stromal 

architecture, the algorithm generates a unique network at the beginning of each 

simulation run. A suite of automated tests were developed to assess whether edge 

lengths and degree centralities are within expected bounds and that there are no 

overlapping nodes or edges.  

 

Using this approach we generate a unique network at the start of each simulation run. 

Running 250 simulations we find that this approach yields networks with median 

sigma and omega values of 12.00 and -0.097 respectively, confirming that the 

network has small world properties (Figure 11). The discrepancy between in vivo and 
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in silico sigma values was expected as sigma scales with network size and the in silico 

follicle is approximately 4 times the volume of the tissue section used to perform the 

topological mapping. Comparison of the median values for both edge lengths and 

degree centralities for in silico and in vivo networks shows no statistically significant 

differences (Figure 12-13).  

 

 

 

 

Figure 11. Development and validation of the Stroma module. (a) Top figure shows a lymph node 
follicle showing tdtomato (red) and eyfp (green) expression from CXCL13-EYFP mice. FDCs are 
marked with an antibody against CD21/35 (white). Bottom figure shows in silico stromal networks. (b) 
This figure shows the distribution of sigma values obtained under baseline parameter values from 250 
simulation runs. (c) This figure shows the distribution of omega values obtained under baseline 
parameter values from 250 simulation runs. Scale bar = 50µm. Java code was developed by J.C and 
S.J. 
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Figure 12. Comparison of in vivo and in silico edge lengths and degree centralities for the entire 
follicular network. No statistically significant differences were found between the median values for 
in silico and in vivo datasets as determined by a Mann-Whitney test with p < 0.05 representing a 
statistically significant result. Bars represent the median values and error bars represent the I.Q.R. 
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Figure 13. Comparison of in vivo and in silico follicular networks. (A and C) Comparison of in vivo 
and in silico distributions of degree centrality and edge length values for the global network and 
associated subnetworks.(B and D) No statistically significant differences were found between the 
median values for in silico and in vivo degree centralities or edge lengths for the global network or 
associated subnetworks. Significance assessed using a Mann-Whitney test with p < 0.05 representing a 
statistically significant result.  
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3.3. Module 2: Chemokine 
 

Many different techniques exist to model molecules in silico, each with associated 

advantages and limitations. A common approach to model diffusion is through 

functions that relate molecular concentration to distance from a source 1, or by PDEs 

(Figure 14) (Bocharov et al., 2011; Guo et al., 2008). As they describe molecular 

concentrations on a continuous scale at the population level, it can be difficult to 

incorporate complex behaviours such as localised binding effects into PDEs and 

distance-concentration functions. At the other extreme, it may also be intractable to 

model molecules (which exist in much larger numbers and move on faster scales than 

immune cells) using individual-based approaches. This limitation can make it difficult 

to simulate the dynamics of chemokine field formation where molecules 

simultaneously undergo production, diffusion, decay, binding and scavenging, key 

mechanisms required to shape functional chemotactic gradients 28. In cases where 

high model granularity is required at the molecular level, soluble factors can be 

represented as floating point values on discretised grids (Figure 14). The scheme we 

implement is a discretised form of the heat equation 22. This mathematical construct is 

capable of isotropic diffusion1, can diffuse to an arbitrary number of neighbours and is 

applicable to linear, planar, spatial and n-dimensional implementations. These 

attributes make it well suited to studies of molecular components of the immune 

system (Figure 14).  

 

 

Figure 14. Different schemes to model diffusion in theoretical models. (A) Functions that relate 
concentration to distance from a source. (B) PDEs predict changes in concentration over time and 
space on a continuous scale. (C) Discrete PDEs in which the environment is binned into discrete 
gridspaces; within each gridspace concentration is homogeneous.  

                                                             
1	  Anisotropy is an implementation artifact where diffusion occurs faster in certain directions 
than others, making the diffusion neighborhood look square	
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In this scheme, chemokine molecules diffuses through a discrete 3D environment 

where the number of moles of chemokine molecules in each grid space (x,y,z) is 

denoted 𝜑(x,y,z). The change in the spatial distribution of molecules is then subject to 

the following simultaneously occurring processes (i) production (ii) diffusion (iii) 

decay and (iv) consumption. As we are using agents to model individual cells, terms 

(i) and (iv) emerge from the simulation. Chemokine is secreted by each stromal cell at 

a fixed rate and is removed from the grid at a rate that is proportional to its current 

value 𝜆.  

 

𝜑(𝑥, 𝑦, 𝑧))*+ = (1 − 𝜆)𝜑(𝑥, 𝑦, 𝑧))              

 

where t represents the time step. At each discrete time step chemokine diffuses to the 

grid spaces adjacent and diagonally adjacent to each grid space. The coefficient for 

the amount of chemokine diffused to each grid space is: 

𝐴0𝜑(𝑥) − 𝜑(𝑦)1𝑒
3456

7    

 

𝜇 = 4𝐷𝑡                  

 

where chemokine in grid space x, 𝜑(𝑥),  is being diffused to grid space y, 𝑑=> is the 

distance squared between x and y, D is the diffusion constant, t is the time step, and A 

is a normalizing constant that ensures the total amount being diffused is less than or 

equal to the amount that exists: 

𝐴∑ 𝑒
3456

7@
=A+ = 1    

 

for an arbitrary grid space where n represents the number of surrounding grid spaces 

in the diffusion neighbourhood, which in CXCL13Sim is a 3D Moore neighbourhood 

with 26 neighbouring grid spaces. This approach mitigates an artefact known as 

anisotropy, where diffusion appears “square” because treating each grid space equally 

would favour diffusion diagonally due to the larger distance to the corner neighbours 
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than the lateral ones. This implementation explicitly takes the distance 𝑑=> between 

gridspace x and its adjacent grid space y into account to avoid this effect without the 

need to implement a tessellated hexagonal grid, which can only be done in 2D. The 

borders of the grid follow Dirichlet boundary conditions. 

When modelling diffusion in discrete space, the speed at which chemokine diffuses is 

limited by the time step and size of the diffusion neighbourhood. Increasing the size 

of the diffusion neighbourhood would allow greater diffusion coefficients without a 

smaller time step, but would significantly increase the time resources required to run 

the algorithm.  To account for this, the time step we use is B
6

CD
 where 𝛿 is the length of 

an edge of the discretized grid spaces, D is the diffusion coefficient, and k is a 

constant, empirically determined in order to match the measured diffusion speed with 

the mathematically derived value for mean-squared displacement for a given diffusion 

constant. The diffusion grid is updated every second while agents are updated once 

every minute and are assumed quasi-static with respect to diffusion. Automated tests 

were developed to ensure that chemokine is conserved when the decay constant is set 

to zero and no agents are in the simulation, that the diffusion coefficient input gives 

the expected mean-squared displacement output and that the rate of diffusion per time 

step cannot extend beyond the diffusion neighbourhood. 

 

The baseline value of the diffusion constant was informed using preliminary measures 

of CXCL13 mobility in follicles of lymph node tissue sections obtained using the 

single-molecule super-resolution imaging approach described in Miller and Cosgrove 

(2018). To assess whether the discrepancy between our baseline value of 7.6 microns 

squared per second and the final published value of 6.6 microns squared per second 

would effect emergent in silico cellular behaviours we performed a local sensitivity 

analysis (see figure 30). Results from this analysis show that changing the diffusion 

constant value between 6-8 microns squared per second did not lead to a statistically 

significant alteration in cellular behaviours in silico and consequently 7.6 was used as 

the baseline value for the diffusion constant. 
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Figure 15. Examples of gradients formed using the Gradjeanu scheme. (A) a chemokine field with 
low diffusion rate and high decay rate leading to a small circle of CXCL13 expression (red) (B) a 
chemokine field with high diffusion rate and low decay rate leading to a larger CXCL13 field (C) 
shows a complex chemokine field generated by a stromal network generated by the algorithm 
described in section 5.2.2. Java code was developed by S.J and J.C. 

A. 

B.

C.

concentration
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3.4. Module 3: Lymphocytes 
 

3.4.1. Lymphocyte Migration 

Chemotaxis, and chemokine receptor internalisation and recycling are key 

mechanisms governing the fine-tuning of responses to chemokines in vivo 23,28,29. In 

addition, the follicle is a highly dense structure and so it is important to account for 

interactions between cells. To model these phenomena in silico, we adapt the scheme 

developed by Lin et al 23,24. In this scheme an agent samples local chemokine 

concentrations using 6 sampling pseudopodia (Figure 16). At each pseudopod there 

are a population of receptors on the cell surface [Rf] that are free to bind ligand [L] at 

a rate Kon. Receptor dynamics are controlled by a set of ordinary differential equations 

solved on a per agent basis using a 4th order Runge-Kutta scheme 30. Ligation of the 

chemokine to its respective receptor [LR] leads to downstream signalling cascades 

and localisation of actin with ligand dissociating at a rate Koff. Following binding 

receptors are desensitized at a rate Kdes, internalised at a rate Ki and are recycled at a 

rate Kr (Figure 16). The values for Kon and Koff are set so that the affinity constant 

(Kd), that is the ligand concentration at which half of the receptors are bound, is set to 

10nM, the baseline concentration within the simulator (Figure 17). To quantify the 

influence of these parameters on the ODE outputs we performed a global sensitivity 

analysis using latin hypercube sampling and partial rank correlation coefficients 

PRCCs, a robust measure for quantifying non-linear relationships between parameter 

inputs and output cell behaviours (Marino et al., 2008). This analysis was performed 

in ASPASIA, a toolkit for evaluating interventions on systems biology markup 

language (SBML) model behaviours (Figure 18) 31. It is important to note that by 

looking at the rank correlation does not take the magnitude of the change of model 

outputs into account. From calculating [LR] at each pseudopod, a gradient vector, 𝐿𝑅HHHHH⃗  

is calculated across the cell along 3 axes with ρ representing each individual 

pseudopod. If 𝐿𝑅HHHHH⃗  exceeds a threshold then the cell will become chemotactic, with the 

overall orientation vector of the cell 𝐿𝑅)J)KLHHHHHHHHHHHHHH⃗  taken as a sum of 𝐿𝑅HHHHH⃗  with a leading edge 

vector𝐿𝑅MHHHHHHHH⃗  that accounts for the orientation of the cell from the previous time step. 

 
𝐿𝑅HHHHH⃗ = 0[𝐿𝑅O+] − [𝐿𝑅OQ]1 + 0[𝐿𝑅O>] − [𝐿𝑅OS]1 + 0[𝐿𝑅OT] − [𝐿𝑅OU]1						 
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																			𝐿𝑅)J)KLHHHHHHHHHHHHHH⃗ =
𝛼𝐿𝑅HHHHH⃗ 		+ 𝐿𝑅MHHHHHHHH⃗

X𝛼𝐿𝑅HHHHH⃗ 		+ 𝐿𝑅MHHHHHHHH⃗ X
																							 

 

𝑑[LR]
𝑑𝑇

= 𝐾J@[𝐿]]𝑅^_ − 𝐾`ab[𝐿𝑅] − 𝐾J^^[𝐿𝑅]					 

 

			
𝑑[𝑅^]
𝑑𝑇

= 𝐾c[𝑅d] −	𝐾J@[𝐿]]𝑅^_ + 𝐾J^^[𝐿𝑅]							 

 

																					
𝑑[𝑅d]
𝑑𝑇

= 𝐾d[𝑅`ab] − 	𝐾c[𝑅d]																					 

 

																						
𝑑[𝑅`ab]
𝑑𝑇

= 𝐾`ab[𝐿𝑅] −	𝐾d[𝑅`ab]														 

 

In the presence of chemotactic gradients actin flows polarize at the leading edge of the 

cell thus the relative weighting between 𝐿𝑅HHHHH⃗ and 𝐿𝑅MHHHHHHHH⃗  is scaled by a constant 𝛼 to 

represent the persistence of the cell; the value of 𝛼 is dependent on the chemotactic 

state of the agent.  As a universal coupling exists between actin flows and cell speed 
32 and relate the increase in velocity v* observed during 

chemokinesis to cell persistence 𝛼 using the following expression: 
 

																		𝑣 ∗		= 	
𝐿𝑁(𝛼)
𝛾

																									

														

		𝛼 = i 𝛼+, 𝑖𝑓	𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑐𝑡𝑖𝑐
								𝛼>, 𝑖𝑓	𝑛𝑜𝑡	𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑐𝑡𝑖𝑐									

	

The value of the scalar term 𝛾 was determined empirically, by fitting the model to WT 

migration data and verifying against CXCR5-/- migration patterns 9. A number of 

automated tests were developed to ensure that total receptor values are conserved over 

time, and that agents move towards high concentrations of chemokines when 

expressing CXCR5.  
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Figure 16. Overview of receptor and migration kinetics in CXCL13Sim. Each cell has 6 chemokine 
sampling pseudopods (4 are shown). At each pseudopod, signalling is a function of local chemokine 
concentrations and receptor expression. Receptor expression is dynamic and subject to ligand 
association/dissociation as well as receptor desensitization, internalization and recycling. From the 
amount of receptors signalling at each pseudopod, gradient vectors are calculated along 3 axes. The 
overall net movement vector LRtotal determined by summing these vectors with a polarity vector 
representing cell persistence in a given direction.  
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Figure 17 CXCR5 Kinetics for 1nM, 10nM and 100nM CXCL13.  Receptor kinetics with calibrated 
parameter values in response to 1nM show large numbers of free receptors on the cell surface with 
relatively low levels of desensitised, internalised and signalling receptors. As the amount of chemokine 
increases, the amount of free receptors decreases and the number of desensitised receptors increases.  
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Figure 18. Parameter sensitivities for ODE parameters performed using ASPASIA 31. The 
influence of a parameter on model outputs is quantified using a partial rank correlation coefficient. 
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3.4.2 Lymphocyte Interactions 

 
To account for dense lymph node environment lymphocyte migration must take into 

account interactions with other cell types. As time proceeds in fixed discrete intervals 

we treat both the movement vector of lymphocytes and the edge of the stromal cell as 

lines (Figure 19). To determine if the two agents are interacting we calculate whether 

the closest point between the two lines is less than the sum of their diameters.  To 

determine the closest point, we define the lines L1 and L2 as follows: 

 

							L1(s)			=		P1	+		sd1,	where	d1	=		Q1	−		P1					(5.13)		 	 	
L2(t)				=		P2	+		td2,	where	d2	=		Q2	−		P2					(5.14)   

  

Then for some pair of values for s and t, L1 (s) and L2 (t) correspond to the closest 

points on the lines, and v(s,t) describes a vector between them.  

 

 

Figure 19. Modelling lymphocyte interactions with stroma. In this scheme the movement vector of 
lymphocytes and stromal cell processes are modelled as lines. Each line is defined by two points, Pi 
and Qi. To determine if the two agents are interacting we calculate whether the closest point between 
the two lines is less than the sum of their diameters.  Then for some pair of values for s and t, L1 (s) 
and L2 (t) correspond to the closest points on the lines, and v(s,t) describes a vector between them.  
 

 

 

 

 

 

 

P1 

Q1 

Q2 

P2 

v(s,t) = L1(s) - L2(t) 
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The closest point between the two lines is obtained when the vector is perpendicular 

to both lines (Figure 19) i.e. when the dot product of the two vectors is equal to zero 

or  

 

d1	*		v(s,	t)	=	0	 	 	
d2	*		v(s,	t)	=	0	   

 

Using Cramer’s rule we can then solve this system of equations to determine which 

values s and t where L1(s) and L2(t) correspond to the closest points on the lines.   

Additionally, cells may interact with each other, however cell structure is dynamic 

and cells are observed to slide over one another. To account for this, once an agent 

has determined the direction in which to move, the probability that the cell can move 

towards the target location is determined as𝑒�B , where 𝛿 is the number of cells in the 

target location. Automated tests were developed to ensure that lymphocytes 

completely caged within a tight network of stromal cell protrusions cannot pass 

through due to interacting with the network, and that the number of agents per 

gridspace does not exceed a threshold value.  

 

3.5 Integration of Model Subunits 
 
System architecture is modelled using an adaptation of the UML as per the domain 

model. This specification defines how model subunits interface and details the flow of 

information through the system (Figure 20 – 24). On the diagrams, the modules are 

specified using: M1, M2 and M3 to represent stroma, chemokine and lymphocytes 

respectively. Key decisions and abstractions made during the development process are 

presented as arguments over evidence 2  using an adaptation of goal structuring 

notation. 

 

 

 

 

                                                             
2	 	Available from https://www.york.ac.uk/computational-immunology/software/cxcl13sim/	
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Figure 20. State machine diagram for a Follicular Dendritic Cell. FDCs are resident in the system 
at t0 and are generated using the algorithm described in M1. FDCs secrete chemokine at a fixed rate 
and once secreted, chemokine diffuses as described in M2. Antigen levels are expressed as integers and 
are decreased following interactions with cognate B cells. LTβR mediated stimulation of CXCL13 
production is assumed constant in homeostatic conditions and is thus not explicitly referenced in the 
Platform Model.  
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Figure 21. State machine diagram for a B cell. B cells are seeded randomly in the follicle at the start 
of the simulation in a cognate or non-cognate state on the basis of antigen specificity. For a cognate cell 
to become primed it must be within 1 cell radius of cognate antigen. With respect to M3, a B cell may 
change into a CXCL13 desensitised state if the magnitude of the cells orientation vector does not 
exceed a threshold value. To migrate, a B cell must determine if there is space to move and will then 
move either randomly or in the direction of a gradient on the basis of it sensitivity to ligand.  

 

 

Figure 22. State machine diagram for RCs. RCs are resident in the system at the start of the 
simulation and are generated using the algorithm described in M1. They secrete chemokine at a fixed 
rate and once secreted, chemokine diffuses as described in M2. 
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Figure 23. Activity diagram for B cells: At the beginning of the activity FDCs express a fixed number 
of antigen, specified by an integer value. CXCL13 is secreted by FDCs, diffuses and is removed from 
the grid as specified in M2. If the number of signalling CXCR5 molecules ([LR]) exceeds a threshold 
value then the B cell is capable of detecting a chemokine gradient. When the magnitude of the 
orientation vector LRtotal exceeds a signalling threshold then the cell will orientate towards the 
gradient otherwise it will orientate randomly. Before migrating a B cell must also determine if it has 
space available and to become primed the B cell must interact with antigen. 

 

 

 

 

Figure 24. Activity diagram for stromal cells: At the beginning of the activity FDCs express a fixed 
number of antigen, specified by an integer value. CXCL13 is secreted by FDCs, RCs at a fixed rate. 

 

 

Naive Cognate B Cell

[else]

[else]NON-CHEMOTACTIC 
MIGRATION

CHEMOTACTIC 
MIGRATION

M3: [LR > signal threshold]

M3: [distance to FDC < 1 cell radius]

[timeSinceInteraction 
> 1440 steps]

/  isPrimed == TRUE

Antigen

IMMUNE COMPLEX 
BOUNDFREE ANTIGEN

INTERACTING

[FDC bound]

/  removed from MASON 
schedule

[distance to APC < 1 cell radius]

[SCS bound]

Reticular Cell

CXCL13 SECRETING

/ M1

/ M2

Follicular Dendritic Cell

IMMUNE COMPLEX 
BOUNDSECRETING CXCL13

/ M2

/ M1

/ At a fixed rate



 35 

3.6 Model Outputs 
 
Once a simulation run is complete, a summary .csv file is produced with the metrics 

detailed in Table 1 for each cognate B-cell agent. These metrics facilitate comparison 

with experimental measures of migration and are used to assess the influence of 

parameter perturbations on the emergent cellular behaviours.  

 

 

 
Measure 

 
Description 

 
 

Total Displacement 
 

Record the steps taken by cells and calculate displacement over a fixed  
time period using vector addition. 

 

 
Net Displacement 

 
Euclidean distance between the first and last position of the cell 

 
 

Cell Velocity 
 

Total displacement / time 
 

 
Motility Coefficient 

 
Net displacement2 / 6* time 

 
 

Meandering Index 
 

√Time  * (net displacement / total displacement)  
 

 
checkPointsReached 

 
Number of unique gridspaces reached 

 

Table 1. Summary of model outputs. Following each individual simulation run, the following metrics 
are calculated for each B-cell agent. 
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Section 4. Simulation Platform 
 

The simulation platform was implemented using Java and the MASON ABM library 

version 19 33 in an iterative process of implementation, validation and refactoring 

using Acceptance Test-Driven Development (ATDD) 34. Tests are continually 

assessed and refined as the project progresses and are incorporated into an automated 

regression framework using the java library JUnit (available from 

http://junit.org/junit4/) to ensure that new code does not disrupt existing functionality, 

expediting the development process. To quantify sources of uncertainty in the our 

simulator we used the R software package SPARTAN 35. This package contains a 

suite of statistical techniques (described in more detail in the following sections) 

specifically designed to help understand the relationship between the simulator and 

the physical system it describes.  

4.1 Model Calibration and Validation  
 
Within the simulation platform each module was developed using Java and the multi 

agent simulation library MASON 33. A total of 125 tests are incorporated into an 

automated regression-testing pipeline using JUnit (available from 

http://junit.org/junit4/), and the eclEmma package (available from 

http://www.eclemma.org/download.html). 

To calibrate the simulator, the 13 free parameters were systematically changed and 

outputs were compared to in vivo multiphoton datasets. Fluorescently labelled wild-

type and CXCR5-/- B cells were adoptively transferred into WT hosts and their 

distribution and migration patterns inside popliteal lymph nodes analysed using 

selective plane illumination microscopy, which preserves the three-dimensional organ 

structure. The median values for 250 simulation runs are 1.15 for the meandering 

index, 13.28 for motility coefficient and 8.11 for speed (Figure 25). Comparison of a 

single In silico run with in vivo datasets showed no significant differences between 

motility coefficients, meandering indices and velocities for (a) wild-type or (b) 

CXCR5-/- B cells; assessed using a Mann-Whitney test at a significance level of 5% 

(Figure 26). The additional 9 parameters were fixed at empirically determined or 

calibrated values representing key attributes such as cell size and the density of the 

stromal cell network that are not designed to change between simulation runs.  
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Figure 25. Distributions of emergent cell behaviours under baseline conditions. (A) Distribution of 
meandering index values for baseline parameter values. (B) Distribution of motility coefficient values 
for baseline parameter values. (C) Distribution of speed values for baseline parameter values. 
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Figure 26. Calibration of emergent behaviours against experimental behaviours. No significant 
differences were observed between in silico and in vivo motility coefficients, meandering indices and 
velocities for wild type or CXCR5-/- B cells. All datasets were non-normal as determined by a Shapiro-
Wilk test, subsequently; a Mann-Whitney test was used to determine if datasets were significantly 
different at a significance level of 5%. Bar charts represent the median value with error bars 
representing the I.Q.R. 
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Parameter Value Unit Range Reference 

B Cell Size 7 µm  

 

Constant 36 

Total Number of B cells 6000 cells Constant 

 

Measured 

Total Number of MRCs 100 cells Constant 

 

Measured 

Total Number of FDCs ~200 cells Constant 

 

Measured 

Total Number of BRCs ~450 cells Constant 

 

Measured 

 Proportion of Cognate Cells 5 

 

% Constant - 

Displacement constant 7.4 µm min-1 [1-10] 

 

Calibrated 

Signal threshold 10  ΔLR Constant 

 

37,38 

Maximum turn angle 180 Degrees Constant 

 

9 

Total receptor number 48,000 Receptors 

 

[10,000-100,000] 39 

Kon 4.8 x 105 M s-1 [1x105-1x106] 

 

40 

Ki 0.0033  s-1 [0.001-0.01] 

 

 39,41 

Kdes 

 

0.075 s-1 [0.01-0.1] 

 

39,41 

Kr 0.004  s-1  [0.001-0.01] 

 

39,41 

Koff 0.0048 s-1  [0.001-0.01] 

 

39,41 

FDC secretion rate 0.18 fg min-1 cell-1 

 

[0.1-0.5] 42,43  

RC secretion rate 0.18 fg min-1 cell-1 

 

[0.1-0.5] 42,43 

CXCL13 decay rate 0.007 s-1 [0.0002-0.05] 

 

44,45 

CXCL13 diffusion rate 7.6 µm2 s-1 [0-146] 

 

Measured 

Polarity 0.475 - 0-1 

 

Calibrated 

Random Polarity 3.8 - Constant 

 

Calibrated 

Table2. Summary of parameter values. For each parameter the name, baseline value and range used 
for uncertainty and sensitivity analyses is provided. Parameter values were determined experimentally 
or in cases where no direct experimental value exists, upper and lower limits were derived from 
indirect evidence, baseline values were then determined by fitting the model to experimental datasets 
(calibration). The model was further validated against migration data from CXCR5-/- B cells and 
parameters were removed where possible. The values for stromal cells are averaged over 250 runs with 
individual values varying to a small extent between runs due to stochastic network formation. 
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5.4 Understanding Aleatory and Parameter Uncertainty 
 

5.4.1 Mitigation of Aleatory Uncertainty 
 

CXCL13Sim is non-deterministic and therefore, repeat experiments using the same 

parameter set can lead to differing results (Figure 25). This variation is termed 

aleatory uncertainty and because of this effect multiple simulation executions must be 

performed to obtain a representative result. To determine how many runs are required 

to give a representative output for a given parameter set we perform an aleatory 

analysis (detailed further above) 35,46 (Figure 27).   

 

In this approach, 20 distributions were generated and contrasted for each sample size. 

A distribution of median responses for each simulation run is generated for each of 

the 20 subsets. Distributions 2–20 are contrasted with the distribution from the 1st set 

using the Vargha-Delaney A-Test (Vargha and Delaney, 2000), a non-parametric 

effect magnitude test that establishes scientific significance by contrasting two 

populations of samples and returning the probability that a randomly selected sample 

from one population will be larger than a randomly selected sample from the other. 

Values of 0.5 indicate that the medians are the same while values of 1 and 0 mean that 

there is no overlap. In our analyses we set thresholds for small (0.56), medium (0.66) 

and large (0.71) effect sizes based on values suggested by 46,47. We define a 

statistically   bheioavural alteration as one that exceeds the large effect size 

threshold.This analysis shows that large differences between parameter sets can be 

detected with 50 replicate run for all outputs while smaller differences require 250 

runs. 
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Figure 27. Mitigating aleatory uncertainty. An aleatory uncertainty analysis was performed using the 
SPARTAN package in R. This analysis shows that 250 runs are required to provide enough power to 
detect small effects in all model outputs. Based on this analysis parameter sensitivity analyses were run 
with 50 replicates while in silico experiments are run with 250 replicates. checkPointsReached (the 
amount of unique grid spaces reached within a simulation run) ✖; meandering index (MI) Δ; motility 
coefficient (MC) ¢; speed ✚.  
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5.4.2 Local Sensitivity Analysis 
 

To quantify parameter uncertainty in CXCL13Sim we first perform a local parameter 

SA using the SPARTAN statistical package as follows: each parameter is adjusted 

within the ranges specified in Table 2, with all other parameters remaining at their 

calibrated value with 100 replicates used for each parameter set to mitigate aleatory 

uncertainty. The Vargha-Delaney A-Test described above is employed to determine if 

changing the parameter value has led to significant difference in comparison with 

baseline behaviours (Vargha and Delaney, 2000).  

 

In this analysis we divided parameters into 3 groups. Parameters controlling B cell 

migration (B-cell displacement constant and cell polarity) had a significant impact on 

both cell migration and scanning rates (Figure 28). Analysis of parameters controlling 

CXCR5 expression (Kdes, Koff, Kr, Ki, Kon and Rf) (Figure 29) show a high level of 

uncertainty around parameters Koff, Kr, Ki with perturbations not leading to a large 

difference in cell migration and scanning rates. However, Kdes, Kon and Rf were 

influential in regulating cell migration. Only perturbed rates of Kdes altered the rate of 

scanning (Figure 29). Perturbations to parameters controlling CXCL13 expression 

(cell secretion rates, diffusion constant and decay rate) led to significant changes in 

both cell behaviours and scanning rates (Figure 30). 
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Figure 28. A-test scores when OAT adjusting parameters which relate to B-cell migration and 
numbers. Parameters travel distance and polarity were incrementally changed within their likelihood 
distributions using an OAT parameter robustness approach. A significant alteration in simulation 
outputs from baseline behaviours was determined using the Vargha-Delaney A-Test. 
checkPointsReached ×; meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚.  
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Figure 29. A-test scores when OAT adjusting parameters which relate to CXCR5 expression. 
Parameters Kdes, Ki, Ka, Koff, Kr and Rf were incrementally changed within their likelihood distributions 
using an OAT parameter robustness approach. A significant alteration in simulation outputs from 
baseline behaviours was determined using the Vargha-Delaney A-Test. checkPointsReached ×; 
meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚. 
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Figure 30. A-test scores when OAT adjusting parameters which relate to CXCL13 bioavailability. 
Parameters diffusion coefficient, cxcl13 emitted and decay constant were incrementally changed within 
their likelihood distributions using an OAT parameter robustness approach. A significant alteration in 
simulation outputs from baseline behaviours was determined using the Vargha-Delaney A-Test. 
checkPointsReached ×; meandering index (MI) Δ; motility coefficient (MC) ¢; speed ✚. 
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5.4.3 Global Sensitivity Analysis 
 

To assess combinatorial effects of parameter perturbations we performed a global 

sensitivity analysis using latin hypercube sampling that partitions the distribution of 

each input parameter into intervals of equal probability, selecting one sample from 

each interval (Figure 31-32). LHC sampling generated 1000 parameter sets, 100 

executions per parameter set were performed on a high-performance cluster and the 

influence of each parameter was quantified using a PRCC (detailed in Chapter 2.2.9). 

The parameters polarity, travel distance, and total number of CXCR5 receptors were 

key determinants of cell migration and scanning rates (Figure 5.22-5.23). 
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Figure 31. Partial rank correlation coefficients for Motility Coefficient and Speed. Red lines show 
positive correlations, blue lines show negative correlations. The length of each line represents the 
magnitude of the correlation between a parameter and an output discounting the linear effects of other 
parameters  
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Figure 32. Partial rank correlation coefficients for Meandering Index and checkPointsReached. 
Red lines show positive correlations, blue lines show negative correlations. The length of each line 
represents the magnitude of the correlation between a parameter and an output discounting the linear 
effects of other parameters 
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Appendix 1. Arguing that the Simulation is a Fit for Purpose Representation of 
the Biological System 
 

The design and implementation decisions made when constructing a simulator are 

influenced by the overarching scientific objectives of the work, with simulation 

results interpreted in this context 4,48. To argue that the simulator fulfils its remit, 

acceptance tests, key design decisions, and information used to inform the design, 

development and validation of the model and simulation are presented as arguments 

over evidence using a visual notation derived from goal structuring notation (Figure 

33) and can be opened using the ARTOO tool3 4. This diagrammatic tool facilitates 

transparency of model design and analysis, capturing the reasoning behind the 

inclusion or exclusion of each biological feature and recording assumptions, as well 

as pointing to evidence supporting model-derived conclusions. 

 

 

Figure 33. Key for Argumentation Notation: (i) claim the purpose of the argument we are seeking to 
support; (ii) Evidence that supports the argument made in the attached claim; (iii) strategy the steps that 
will be taken to argue that the claim is supported; (iv) context defines the purpose of the argument and 
key terms; (v) justification provides a reasoning behind the selection of a strategy or claim and  (vi) 
assumption provides an explicit statement of any assumptions made in place of biological 
understanding. Figure reproduced from 4. 

 

 

 

 

 

                                                             
3	 	Available from: http://artoofree.simomics.com/	
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