Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

With the increasing availability and complexity of mouse models of disease, either spontaneous or induced, there is a concomitant increase in their use in the analysis of pathogenesis. Among such diseases is osteoarthritis, a debilitating disease with few treatment options. While advances in our understanding of the pathogenesis of osteoarthritis has advanced through clinical investigations and genome-wide association studies, there is still a large gap in our knowledge, hindering advances in therapy. Patient samples are available ex vivo, but these are generally in the very late stages of disease. However, with mice, we are able to induce disease at a defined time and track the progression in vivo and ex vivo, from inception to end stage, to delineate the processes involved in disease development. © 2018 by John Wiley & Sons, Inc.

Original publication

DOI

10.1002/cpmo.50

Type

Journal article

Journal

Curr Protoc Mouse Biol

Publication Date

12/2018

Volume

8

Keywords

DMM, destabilized medial meniscus, histology, mouse models, osteoarthritis, μCT, Animals, Disease Models, Animal, Menisci, Tibial, Mice, Osteoarthritis