Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Synthetic RNA formulations and viral vectors are the two main approaches for delivering small therapeutic RNA to human cells. Here we report findings supporting an alternative strategy in which an endogenous human RNA polymerase (RNAP) is harnessed to make RNA hairpin-containing small RNA from synthetic single-stranded DNA oligonucleotides. We report that circularizing a DNA template strand encoding a pre-microRNA hairpin mimic can trigger its circumtranscription by human RNAP III in vitro and in human cells. Sequence and secondary structure preferences that appear to promote productive transcription are described. The circular topology of the template is required for productive transcription, at least in part, to stabilize the template against exonucleases. In contrast to bacteriophage and Escherichia coli RNAPs, human RNAPs do not carry out rolling circle transcription on circularized templates. While transfected DNA circles distribute between the nucleus and cytosol, their transcripts are found mainly in the cytosol. Circularized oligonucleotides are synthetic, free of the hazards of viral vectors and maintain small RNA information in a stable form that RNAP III can access in a cellular context with, in some cases, near promoter-like precision and biologically relevant efficiency.

Original publication

DOI

10.1093/nar/gks1334

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

01/02/2013

Volume

41

Pages

2552 - 2564

Keywords

DNA, Circular, HEK293 Cells, Humans, Nucleic Acid Conformation, Oligodeoxyribonucleotides, RNA Polymerase III, RNA, Small Untranslated, Ribonucleases, Templates, Genetic, Transcription, Genetic, Transfection