Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The bone marrow plays a unique role within the immune system. We compared the phenotype and function of virus-specific CD8(+) T cells from matched samples of human peripheral blood and bone marrow. Analysis of virus-specific memory CD8(+) T cells showed widely divergent partition of antigen-specific populations between blood and bone marrow. T cells specific for Epstein-Barr virus (EBV) lytic antigens were enriched 3-fold in marrow compared with blood, whereas the response to EBV latent epitopes was equivalent between the 2 compartments. No difference in EBV viral load or expression of the EBV lytic protein was observed between blood and bone marrow. In direct contrast, although cytomegalo-virus (CMV)-specific T cells were the largest virus-specific population within peripheral blood, they were reduced by 60% within marrow. Bone marrow T cells were found to exhibit a unique CCR5(+)CXCR6(+)CXCR3(-) homing phenotype which has not been observed on T cells from other secondary lymphoid organs or peripheral organs. Expression of CCR5 and CXCR6 was higher on EBV-specific T cells within peripheral blood compared with CMV-specific populations. These observations identify a novel bone marrow homing phenotype for CD8(+) memory T cells, which necessitates a reevaluation of the magnitude of antigen-specific populations within the lymphoid system.

Original publication

DOI

10.1182/blood-2008-02-138040

Type

Journal article

Journal

Blood

Publication Date

15/10/2008

Volume

112

Pages

3293 - 3302

Keywords

Bone Marrow, CD8-Positive T-Lymphocytes, Cell Movement, Chemokines, Cytokines, Flow Cytometry, Herpesvirus 4, Human, Humans, Immunologic Memory, Interferon-gamma, Models, Biological, Phenotype, Receptors, CCR5, Receptors, CXCR6, Receptors, Chemokine, Receptors, Virus, Viral Load