Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Interleukin-32 (IL-32) is a recently described cytokine that is a strong inducer of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8. The expression of this cytokine is highly increased in the rheumatoid synovium and correlated with the severity of joint inflammation. Little is known regarding the innate immune-related regulation of IL-32 by fibroblast-like synoviocytes (FLSs). We therefore investigated the effect of innate immune stimulation by ligands of Toll-like receptor (TLR)2, TLR3, and TLR4, and cytokines such as TNF-α and interferon (IFN)-γ, on IL-32 expression by FLSs. METHODS: FLSs were isolated from patients with rheumatoid arthritis (RA) according to the ACR criteria. Quantitative RT-PCR, confocal analysis, and ELISA were performed to evaluate IL-32 mRNA induction and IL-32 release by FLSs stimulated with TLR2 (BLP), TLR3 (poly I:C), and TLR4 (lipopolysaccharide) ligands, TNF-α and IFN-γ. RESULTS: TLR2, -3, and -4 ligands as well as IFN-γ and TNF-α induced IL-32 β, γ and δ mRNA expression by RA FLSs. Mature IL-32 was expressed intracellularly and released by cells stimulated with the various activators. The IL-32α isoform was expressed intracellularly in response to TNF-α and poly I:C and not released in culture supernatants. Stimulation of FLS with TNF-α, BLP, lipopolysaccharide, or poly I:C concomitant with IFN-γ increased IL-32 expression compared with stimulation with IFN-γ alone. CONCLUSIONS: IL-32 synthesis by FLSs is tightly regulated by innate immunity in rheumatoid arthritis. Thus TNF-α, IFN-γ, double-strand RNA, hyaluronic acid, or other damage-associated molecular patterns (DAMPs), highly secreted in synovial tissues of RA patients, might trigger IL-32 secretion by FLSs. IL-32 might therefore represent a relevant therapeutic target in RA.

Original publication

DOI

10.1186/ar3073

Type

Journal article

Journal

Arthritis Res Ther

Publication Date

2010

Volume

12

Keywords

Arthritis, Rheumatoid, Cells, Cultured, Drug Synergism, Fibroblasts, Gene Expression, Humans, Immunity, Innate, Interferon Inducers, Interferon-gamma, Interleukins, Lipopolysaccharides, Poly I-C, RNA, Messenger, Synovial Membrane, Toll-Like Receptor 2, Toll-Like Receptor 3, Tumor Necrosis Factor-alpha