Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Arachidonic acid (ARA) is a major component of lipid bilayers as well as the key substrate for the eicosanoid cascades. ARA is readily oxidized, and its non-enzymatic and enzymatic oxidation products induce inflammatory responses in nearly all tissues, including lung tissues. Deuteration at bis-allylic positions substantially decreases the overall rate of ARA oxidation when hydrogen abstraction is an initiating event. To compare the effects of dosing of arachidonic acid (H-ARA) and its bis-allylic hexadeuterated form (D-ARA) on lungs in conventionally healthy mice and in an acute lung injury model, mice were dosed with H-ARA or D-ARA for six weeks through dietary supplementation and then challenged with intranasal lipopolysaccharide (LPS) for subsequent analysis of bronchoalveolar lavage fluid and lung tissue. Dosing on D-ARA resulted in successful incorporation of D-ARA into various tissues. D-ARA significantly reduced LPS-induced adverse effects on alveolar septal thickness and the bronchoalveolar area. Oral deuterated ARA is taken up efficiently and protects against adverse LPS-induced pathology. This suggests novel therapeutic avenues for reducing lung damage during severe infections and other pathological conditions with inflammation in the pulmonary system and other inflammatory diseases.

Original publication

DOI

10.3390/antiox11040681

Type

Journal article

Journal

Antioxidants (Basel)

Publication Date

31/03/2022

Volume

11

Keywords

D-PUFA, acute respiratory distress syndrome, arachidonic acid, eicosanoids, isotope effect, lung